Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Ritter, Christian [VerfasserIn]   i
 Lee, Ji Young [VerfasserIn]   i
 Pham, Minh Tu [VerfasserIn]   i
 Pabba, M. K. [VerfasserIn]   i
 Cardoso, M. C. [VerfasserIn]   i
 Bartenschlager, Ralf [VerfasserIn]   i
 Rohr, Karl [VerfasserIn]   i
Titel:Multi-detector fusion and Bayesian smoothing for tracking viral and chromatin structures
Verf.angabe:C. Ritter, J. -Y. Lee, M. -T. Pham, M. K. Pabba, M. C. Cardoso, R. Bartenschlager, K. Rohr
E-Jahr:2024
Jahr:October 2024
Umfang:13 S.
Illustrationen:Illustrationen, Diagramme
Fussnoten:Gesehen am 05.06.2025
Titel Quelle:Enthalten in: Medical image analysis
Ort Quelle:Amsterdam [u.a.] : Elsevier Science, 1996
Jahr Quelle:2024
Band/Heft Quelle:97(2024) vom: Okt., Artikel-ID 103227, Seite [1]-13
ISSN Quelle:1361-8423
Abstract:Automatic tracking of viral and intracellular structures displayed as spots with varying sizes in fluorescence microscopy images is an important task to quantify cellular processes. We propose a novel probabilistic tracking approach for multiple particle tracking based on multi-detector and multi-scale data fusion as well as Bayesian smoothing. The approach integrates results from multiple detectors using a novel intensity-based covariance intersection method which takes into account information about the image intensities, positions, and uncertainties. The method ensures a consistent estimate of multiple fused particle detections and does not require an optimization step. Our probabilistic tracking approach performs data fusion of detections from classical and deep learning methods as well as exploits single-scale and multi-scale detections. In addition, we use Bayesian smoothing to fuse information of predictions from both past and future time points. We evaluated our approach using image data of the Particle Tracking Challenge and achieved state-of-the-art results or outperformed previous methods. Our method was also assessed on challenging live cell fluorescence microscopy image data of viral and cellular proteins expressed in hepatitis C virus-infected cells and chromatin structures in non-infected cells, acquired at different spatial-temporal resolutions. We found that the proposed approach outperforms existing methods.
DOI:doi:10.1016/j.media.2024.103227
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1016/j.media.2024.103227
 kostenfrei: Volltext: https://www.sciencedirect.com/science/article/pii/S136184152400152X
 DOI: https://doi.org/10.1016/j.media.2024.103227
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Biomedical imaging
 Covariance intersection algorithm
 Microscopy images
 Multi-detector data fusion
 Particle detection and tracking
K10plus-PPN:1927602459
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69354067   QR-Code
zum Seitenanfang