Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Randhawa, Sukanya [VerfasserIn]   i
 Aygün, Eren [VerfasserIn]   i
 Randhawa, Guntaj [VerfasserIn]   i
 Herfort, Benjamin [VerfasserIn]   i
 Lautenbach, Sven [VerfasserIn]   i
 Zipf, Alexander [VerfasserIn]   i
Titel:Paved or unpaved?
Titelzusatz:A deep learning derived road surface global dataset from mapillary street-view imagery
Verf.angabe:Sukanya Randhawa, Eren Aygün, Guntaj Randhawa, Benjamin Herfort, Sven Lautenbach, Alexander Zipf
E-Jahr:2025
Jahr:May 2025
Umfang:13 S.
Illustrationen:Illustrationen
Fussnoten:Online verfügbar: 26. März 2025 ; Gesehen am 12.06.2025
Titel Quelle:Enthalten in: International Society for Photogrammetry and Remote SensingISPRS journal of photogrammetry and remote sensing
Ort Quelle:Amsterdam [u.a.] : Elsevier, 1989
Jahr Quelle:2025
Band/Heft Quelle:223(2025) vom: Mai, Seite 362-374
ISSN Quelle:0924-2716
Abstract:Road surface information is essential for applications in urban planning, disaster routing or logistics optimization and helps to address various Sustainable Development Goals (SDGS): especially SDGs 1 (No poverty), 3 (Good health and well-being), 8 (Decent work and economic growth), 9 (Industry, Innovation and Infrastructure), 11 (Sustainable cities and communities), 12 (Responsible consumption and production), and 13 (Climate action). We have released an open dataset with global coverage that provides road surface characteristics (paved or unpaved). The data was derived by a GeoAI approach that utilized 105 million images from the world’s largest crowdsourcing-based street-view platform, Mapillary. We propose a hybrid deep learning approach which combines SWIN-Transformer based road surface prediction and CLIP-and-DL segmentation based thresholding for filtering of bad quality images. The road surface prediction results have been matched and integrated with OpenStreetMap (OSM) road geometries. Model validation against OSM surface data achieved strong performance, with F1 scores for paved roads varying between 91%-97% across continents. The dataset expands the availability of global road surface information by nearly four million kilometers compared to currently available information in OSM — now representing approximately 36% of the total length of the global road network. Most regions showed moderate to high paved road coverage (60%-80%), but significant gaps were noted in specific areas of Africa and Asia. Urban areas tend to have near-complete paved coverage, while rural regions displayed more variability. This information has the potential to derive more reliable estimations for indicators such as rural accessibility or regional economic development potential and to assist e.g. humanitarian actors in emergency logistic planning.
DOI:doi:10.1016/j.isprsjprs.2025.02.020
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1016/j.isprsjprs.2025.02.020
 kostenfrei: Volltext: https://www.sciencedirect.com/science/article/pii/S0924271625000784
 DOI: https://doi.org/10.1016/j.isprsjprs.2025.02.020
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Computer vision models
 Deep learning
 GeoAI
 Mapillary street-view imagery
 OpenStreetMap
 Road surface
K10plus-PPN:1928101461
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69355734   QR-Code
zum Seitenanfang