Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Fulman, Nir [VerfasserIn]   i
 Memduhoğlu, Abdulkadir [VerfasserIn]   i
 Zipf, Alexander [VerfasserIn]   i
Titel:Distortions in judged spatial relations in large language models
Verf.angabe:Nir Fulman, Abdulkadir Memduhoğlu, Alexander Zipf
Ausgabe:Version v2
E-Jahr:2024
Jahr:4 Jun 2024
Umfang:18 S.
Illustrationen:Karte
Fussnoten:Gesehen am 23.06.2025
Titel Quelle:Enthalten in: Arxiv
Ort Quelle:Ithaca, NY : Cornell University, 1991
Jahr Quelle:2024
Band/Heft Quelle:(2024) vom: Apr., Artikel-ID 2401.04218, Seite 1-18
Abstract:We present a benchmark for assessing the capability of Large Language Models (LLMs) to discern intercardinal directions between geographic locations and apply it to three prominent LLMs: GPT-3.5, GPT-4, and Llama-2. This benchmark specifically evaluates whether LLMs exhibit a hierarchical spatial bias similar to humans, where judgments about individual locations' spatial relationships are influenced by the perceived relationships of the larger groups that contain them. To investigate this, we formulated 14 questions focusing on well-known American cities. Seven questions were designed to challenge the LLMs with scenarios potentially influenced by the orientation of larger geographical units, such as states or countries, while the remaining seven targeted locations were less susceptible to such hierarchical categorization. Among the tested models, GPT-4 exhibited superior performance with 55 percent accuracy, followed by GPT-3.5 at 47 percent, and Llama-2 at 45 percent. The models showed significantly reduced accuracy on tasks with suspected hierarchical bias. For example, GPT-4's accuracy dropped to 33 percent on these tasks, compared to 86 percent on others. However, the models identified the nearest cardinal direction in most cases, reflecting their associative learning mechanism, thereby embodying human-like misconceptions. We discuss avenues for improving the spatial reasoning capabilities of LLMs.
DOI:doi:10.48550/arXiv.2401.04218
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.48550/arXiv.2401.04218
 kostenfrei: Volltext: http://arxiv.org/abs/2401.04218
 DOI: https://doi.org/10.48550/arXiv.2401.04218
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Computer Science - Computation and Language
K10plus-PPN:1928887368
Verknüpfungen:→ Sammelwerk

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69358229   QR-Code
zum Seitenanfang