Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Zoellin, Jay Rodney Toby [VerfasserIn]   i
 Turgut, Ferhat [VerfasserIn]   i
 Chen, Ruiye [VerfasserIn]   i
 Saad, Amr [VerfasserIn]   i
 Giesser, Samuel D. [VerfasserIn]   i
 Sommer, Chiara [VerfasserIn]   i
 Guignard, Viviane [VerfasserIn]   i
 Ihle, Jonas [VerfasserIn]   i
 Mono, Marie-Louise [VerfasserIn]   i
 Becker, Matthias D. [VerfasserIn]   i
 Zhu, Zhuoting [VerfasserIn]   i
 Somfai, Gábor Márk [VerfasserIn]   i
Titel:Evaluating the reproducibility of a deep learning algorithm for the prediction of retinal age
Verf.angabe:Jay Rodney Toby Zoellin, Ferhat Turgut, Ruiye Chen, Amr Saad, Samuel D. Giesser, Chiara Sommer, Viviane Guignard, Jonas Ihle, Marie-Louise Mono, Matthias D. Becker, Zhuoting Zhu, Gábor Márk Somfai
Jahr:2025
Umfang:14 S.
Illustrationen:Illustrationen
Fussnoten:Veröffentlicht: 26 November 2024 ; Gesehen am 02.07.2025
Titel Quelle:Enthalten in: GeroScience
Ort Quelle:[Cham] : Springer International Publishing, 2017
Jahr Quelle:2025
Band/Heft Quelle:47(2025), 2, Seite 2541-2554
ISSN Quelle:2509-2723
Abstract:Recently, a deep learning algorithm (DLA) has been developed to predict the chronological age from retinal images. The Retinal Age Gap (RAG), a deviation between predicted age from retinal images (Retinal Age, RA) and chronological age, correlates with mortality and age-related diseases. This study evaluated the reliability and accuracy of RA predictions and analyzed various factors that may influence them. We analyzed two groups of participants: Intravisit and Intervisit, both imaged by color fundus photography. RA was predicted using an established algorithm. The Intervisit group comprised 26 subjects, imaged in two sessions. The Intravisit group had 41 subjects, of whom each eye was photographed twice in one session. The mean absolute test-retest difference in predicted RA was 2.39 years for Intervisit and 2.13 years for Intravisit, with the latter showing higher prediction variability. The chronological age was predicted accurately from fundus photographs. Subsetting image pairs based on differential image quality reduced test-retest discrepancies by up to 50%, but mean image quality was not correlated with retest outcomes. Marked diurnal oscillations in RA predictions were observed, with a significant overestimation in the afternoon compared to the morning in the Intravisit cohort. The order of image acquisition across imaging sessions did not influence RA prediction and subjective age perception did not predict RAG. Inter-eye consistency exceeded 3 years. Our study is the first to explore the reliability of RA predictions. Consistent image quality enhances retest outcomes. The observed diurnal variations in RA predictions highlight the need for standardized imaging protocols, but RAG could soon be a reliable metric in clinical investigations.
DOI:doi:10.1007/s11357-024-01445-0
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1007/s11357-024-01445-0
 DOI: https://doi.org/10.1007/s11357-024-01445-0
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Ageing
 Deep learning algorithm
 Gerontology
 Neural ageing
 Ophthalmology
 Retinal age gap
 Retinal diseases
 Retinal imaging
 Retinopathy of prematurity
K10plus-PPN:1929524889
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69361967   QR-Code
zum Seitenanfang