Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Jeong, Yunhee [VerfasserIn]   i
 Ronen, Jonathan [VerfasserIn]   i
 Kopp, Wolfgang [VerfasserIn]   i
 Lutsik, Pavlo [VerfasserIn]   i
 Akalin, Altuna [VerfasserIn]   i
Titel:scMaui
Titelzusatz:a widely applicable deep learning framework for single-cell multiomics integration in the presence of batch effects and missing data
Verf.angabe:Yunhee Jeong, Jonathan Ronen, Wolfgang Kopp, Pavlo Lutsik and Altuna Akalin
E-Jahr:2024
Jahr:06 August 2024
Umfang:22 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 14.07.2025
Titel Quelle:Enthalten in: BMC bioinformatics
Ort Quelle:London : BioMed Central, 2000
Jahr Quelle:2024
Band/Heft Quelle:25(2024), Artikel-ID 257, Seite 1-22
ISSN Quelle:1471-2105
Abstract:The recent advances in high-throughput single-cell sequencing have created an urgent demand for computational models which can address the high complexity of single-cell multiomics data. Meticulous single-cell multiomics integration models are required to avoid biases towards a specific modality and overcome sparsity. Batch effects obfuscating biological signals must also be taken into account. Here, we introduce a new single-cell multiomics integration model, Single-cell Multiomics Autoencoder Integration (scMaui) based on variational product-of-experts autoencoders and adversarial learning. scMaui calculates a joint representation of multiple marginal distributions based on a product-of-experts approach which is especially effective for missing values in the modalities. Furthermore, it overcomes limitations seen in previous VAE-based integration methods with regard to batch effect correction and restricted applicable assays. It handles multiple batch effects independently accepting both discrete and continuous values, as well as provides varied reconstruction loss functions to cover all possible assays and preprocessing pipelines. We demonstrate that scMaui achieves superior performance in many tasks compared to other methods. Further downstream analyses also demonstrate its potential in identifying relations between assays and discovering hidden subpopulations.
DOI:doi:10.1186/s12859-024-05880-w
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1186/s12859-024-05880-w
 DOI: https://doi.org/10.1186/s12859-024-05880-w
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Autoencoders
 Deep learning
 Multi-omics
 Single cell
K10plus-PPN:1930409311
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69365236   QR-Code
zum Seitenanfang