Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Kumar, Kaushal [VerfasserIn]   i
Titel:Forecasting crude oil prices using reservoir computing models
Verf.angabe:Kaushal Kumar
E-Jahr:2024
Jahr:28 November 2024
Umfang:21 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 17.07.2025
Titel Quelle:Enthalten in: Computational economics
Ort Quelle:Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988
Jahr Quelle:2024
Band/Heft Quelle:(2024), early view, Seite [1-21]
ISSN Quelle:1572-9974
Abstract:Accurate forecasting of crude oil prices is crucial for informed financial decision-making. This study presents a cutting-edge Reservoir Computing (RC) model specifically designed for precise crude oil price predictions, outperforming traditional methods such as ARIMA, LSTM, and GRU. Using daily closing prices from major indices spanning January 2010 to December 2023, we conducted a thorough evaluation. The RC model consistently demonstrates superior accuracy and computational efficiency. Quantitative metrics reveal the RC model’s dominance with a Mean Absolute Error (MAE) of 0.0094, Mean Squared Error (MSE) of 0.00035, Root Mean Squared Error (RMSE) of 0.0196, and a notably low Mean Absolute Percentage Error (MAPE) of $$1.450\%$$. Additionally, the RC model’s runtime of 1.11 s underscores its computational efficiency, far surpassing ARIMA (493.22 s), LSTM (423.55 s), and GRU (15.73 s). During periods of economic disruption, such as the COVID-19 lockdowns, the RC model effectively captured sharp price fluctuations, highlighting its robust forecasting capability. These findings emphasize the RC model’s potential as a reliable tool for enhancing decision-making processes in the dynamic energy market, particularly for real-time applications such as infectious disease case count forecasting. This study advocates for the broader adoption of Reservoir Computing models to improve predictive accuracy and operational efficiency in energy economics.
DOI:doi:10.1007/s10614-024-10797-w
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1007/s10614-024-10797-w
 DOI: https://doi.org/10.1007/s10614-024-10797-w
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Computational Economics
 Computational Intelligence
 Computational Neuroscience
 Computer Science
 Crude oil prices
 Energy Informatics
 Financial market prediction
 Forecasting
 Information Processing
 Reservoir computing
 Time series analysis
K10plus-PPN:1931000867
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69366547   QR-Code
zum Seitenanfang