Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Albrecht, Marco [VerfasserIn]   i
 Stichel, Damian [VerfasserIn]   i
 Müller, Benedikt [VerfasserIn]   i
 Sticht, Carsten [VerfasserIn]   i
 Gretz, Norbert [VerfasserIn]   i
 Klingmüller, Ursula [VerfasserIn]   i
 Breuhahn, Kai [VerfasserIn]   i
 Matthäus, Franziska [VerfasserIn]   i
Titel:TTCA
Titelzusatz:an R package for the identification of differentially expressed genes in time course microarray data
Verf.angabe:Marco Albrecht, Damian Stichel, Benedikt Müller, Ruth Merkle, Carsten Sticht, Norbert Gretz, Ursula Klingmüller, Kai Breuhahn and Franziska Matthäus
E-Jahr:2017
Jahr:14 January 2017
Umfang:11 S.
Fussnoten:Gesehen am 18.09.2018
Titel Quelle:Enthalten in: BMC bioinformatics
Ort Quelle:London : BioMed Central, 2000
Jahr Quelle:2017
Band/Heft Quelle:18(2017) Artikel-Nummer 33, 11 Seiten
ISSN Quelle:1471-2105
Abstract:Background: The analysis of microarray time series promises a deeper insight into the dynamics of the cellular response following stimulation. A common observation in this type of data is that some genes respond with quick, transient dynamics, while other genes change their expression slowly over time. The existing methods for detecting significant expression dynamics often fail when the expression dynamics show a large heterogeneity. Moreover, these methods often cannot cope with irregular and sparse measurements. Results: The method proposed here is specifically designed for the analysis of perturbation responses. It combines different scores to capture fast and transient dynamics as well as slow expression changes, and performs well in the presence of low replicate numbers and irregular sampling times. The results are given in the form of tables including links to figures showing the expression dynamics of the respective transcript. These allow to quickly recognise the relevance of detection, to identify possible false positives and to discriminate early and late changes in gene expression. An extension of the method allows the analysis of the expression dynamics of functional groups of genes, providing a quick overview of the cellular response. The performance of this package was tested on microarray data derived from lung cancer cells stimulated with epidermal growth factor (EGF). Conclusion: Here we describe a new, efficient method for the analysis of sparse and heterogeneous time course data with high detection sensitivity and transparency. It is implemented as R package TTCA (transcript time course analysis) and can be installed from the Comprehensive R Archive Network, CRAN. The source code is provided with the Additional file 1.
DOI:doi:10.1186/s12859-016-1440-8
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: http://dx.doi.org/10.1186/s12859-016-1440-8
 kostenfrei: Volltext: https://doi.org/10.1186/s12859-016-1440-8
 DOI: https://doi.org/10.1186/s12859-016-1440-8
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:158105727X
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68305730   QR-Code
zum Seitenanfang