Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Pakmor, Rüdiger [VerfasserIn]   i
 Grand, Robert J. J. [VerfasserIn]   i
 Springel, Volker [VerfasserIn]   i
 Guillet, Thomas [VerfasserIn]   i
 Pfrommer, Christoph [VerfasserIn]   i
Titel:Magnetic field formation in the Milky Way like disc galaxies of the Auriga project
Verf.angabe:Rüdiger Pakmor, Facundo A. Gómez, Robert J.J. Grand, Federico Marinacci, Christine M. Simpson, Volker Springel, David J.R. Campbell, Carlos S. Frenk, Thomas Guillet, Christoph Pfrommer and Simon D.M. White
E-Jahr:2017
Jahr:04 May 2017
Umfang:15 S.
Fussnoten:Gesehen am 19.10.2017
Titel Quelle:Enthalten in: Royal Astronomical SocietyMonthly notices of the Royal Astronomical Society
Ort Quelle:Oxford : Oxford Univ. Press, 1827
Jahr Quelle:2017
Band/Heft Quelle:469(2017), 3, Seite 3185-3199
ISSN Quelle:1365-2966
Abstract:The magnetic fields observed in the Milky Way and nearby galaxies appear to be in equipartition with the turbulent, thermal and cosmic ray energy densities, and hence are expected to be dynamically important. However, the origin of these strong magnetic fields is still unclear, and most previous attempts to simulate galaxy formation from cosmological initial conditions have ignored them altogether. Here, we analyse the magnetic fields predicted by the simulations of the Auriga Project, a set of 30 high-resolution cosmological zoom simulations of Milky Way like galaxies, carried out with a moving-mesh magnetohydrodynamics code and a detailed galaxy formation physics model. We find that the magnetic fields grow exponentially at early times owing to a small-scale dynamo with an e-folding time of roughly 100 Myr in the centre of haloes until saturation occurs around z = 2-3, when the magnetic energy density reaches about 10 per cent of the turbulent energy density with a typical strength of $$10\text{--}50\,\rm {\mu G}$$. In the galactic centres, the ratio between magnetic and turbulent energies remains nearly constant until z = 0. At larger radii, differential rotation in the discs leads to linear amplification that typically saturates around z = 0.5-0. The final radial and vertical variations of the magnetic field strength can be well described by two joint exponential profiles, and are in good agreement with observational constraints. Overall, the magnetic fields have only little effect on the global evolution of the galaxies as it takes too long to reach equipartition. We also demonstrate that our results are well converged with numerical resolution.
DOI:doi:10.1093/mnras/stx1074
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: http://dx.doi.org/10.1093/mnras/stx1074
 DOI: https://doi.org/10.1093/mnras/stx1074
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1564561917
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68180912   QR-Code
zum Seitenanfang