Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Safran, Samuel [VerfasserIn]   i
 Schwarz, Ulrich S. [VerfasserIn]   i
Titel:Physics of cell elasticity, shape and adhesion
Verf.angabe:S.A. Safran, N. Gov, A. Nicolas, U.S. Schwarz, T. Tlusty
E-Jahr:2005
Jahr:12 January 2005
Umfang:31 S.
Teil:volume:352
 year:2005
 number:1
 pages:171-201
 extent:31
Fussnoten:Gesehen am 15.12.2017
Titel Quelle:Enthalten in: Physica / A
Ort Quelle:Amsterdam : North Holland Publ. Co., 1975
Jahr Quelle:2005
Band/Heft Quelle:352(2005), 1, Seite 171-201
ISSN Quelle:1873-2119
Abstract:We review recent theoretical work that analyzes experimental measurements of the shape, fluctuations and adhesion properties of biological cells. Particular emphasis is placed on the role of the cytoskeleton and cell elasticity and we contrast the shape and adhesion of elastic cells with fluid-filled vesicles. In red blood cells (RBC), the cytoskeleton consists of a two-dimensional network of spectrin proteins. Our analysis of the wavevector and frequency dependence of the fluctuation spectrum of RBC indicates that the spectrin network acts as a confining potential that reduces the fluctuations of the lipid bilayer membrane. However, since the cytoskeleton is only sparsely connected to the bilayer, one cannot regard the composite cytoskeleton-membrane as a polymerized object with a shear modulus. The sensitivity of RBC fluctuations and shapes to ATP concentration may reflect topological defects induced in the cytoskeleton network by ATP. The shapes of cells that adhere to a substrate are strongly determined by the cytoskeletal elasticity that can be varied experimentally by drugs that depolymerize the cytoskeleton. This leads to a tension-driven retraction of the cell body and a pearling instability of the resulting ray-like protrusions. Recent experiments have shown that adhering cells exert polarized forces on substrates. The interactions of such “force dipoles” in either bulk gels or on surfaces can be used to predict the nature of self-assembly of cell aggregates and may be important in the formation of artificial tissues. Finally, we note that cell adhesion strongly depends on the forces exerted on the adhesion sites by the tension of the cytoskeleton. The size and shape of the adhesion regions are strongly modified as the tension is varied and we present an elastic model that relates this tension to deformations that induce the recruitment of new molecules to the adhesion region. In all these examples, cell shape and adhesion differ from vesicle shape and adhesion due to the presence of the elastic cytoskeleton and to the fact that active processes (ATP, molecular motors) within the cell modify cytoskeletal elasticity and tension.
DOI:doi:10.1016/j.physa.2004.12.035
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: http://dx.doi.org/10.1016/j.physa.2004.12.035
 Volltext: http://www.sciencedirect.com/science/article/pii/S0378437104016206
 DOI: https://doi.org/10.1016/j.physa.2004.12.035
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Adhesion
 Elasticity
 Membrane
K10plus-PPN:1566417031
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68202315   QR-Code
zum Seitenanfang