Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Pagáčova, Eva [VerfasserIn]   i
 Schmidt-Kaler, Franz [VerfasserIn]   i
 Hildenbrand, Georg Lars [VerfasserIn]   i
 Lee, Jin-Ho [VerfasserIn]   i
 Bestvater, Felix [VerfasserIn]   i
 Wenz, Frederik [VerfasserIn]   i
 Hausmann, Michael [VerfasserIn]   i
Titel:Challenges and contradictions of metal nano-particle applications for radio-sensitivity enhancement in cancer therapy
Verf.angabe:Eva Pagáčová, Lenka Štefančíková, Franz Schmidt-Kaler, Georg Hildenbrand, Tomáš Vičar, Daniel Depeš, Jin-Ho Lee, Felix Bestvater, Sandrine Lacombe, Erika Porcel, Stéphane Roux, Frederik Wenz, Olga Kopečná, Iva Falková, Michael Hausmann and Martin Falk
E-Jahr:2019
Jahr:30 January 2019
Umfang:25 S.
Fussnoten:Gesehen am 0.7.03.2019
Titel Quelle:Enthalten in: International journal of molecular sciences
Ort Quelle:Basel : Molecular Diversity Preservation International, 2000
Jahr Quelle:2019
Band/Heft Quelle:20(2019,3) Artikel-Nummer 588, 25 Seiten
ISSN Quelle:1422-0067
 1661-6596
Abstract:From the very beginnings of radiotherapy, a crucial question persists with how to target the radiation effectiveness into the tumor while preserving surrounding tissues as undamaged as possible. One promising approach is to selectively pre-sensitize tumor cells by metallic nanoparticles. However, though the “physics” behind nanoparticle-mediated radio-interaction has been well elaborated, practical applications in medicine remain challenging and often disappointing because of limited knowledge on biological mechanisms leading to cell damage enhancement and eventually cell death. In the present study, we analyzed the influence of different nanoparticle materials (platinum (Pt), and gold (Au)), cancer cell types (HeLa, U87, and SKBr3), and doses (up to 4 Gy) of low-Linear Energy Transfer (LET) ionizing radiation (γ- and X-rays) on the extent, complexity and reparability of radiation-induced γH2AX + 53BP1 foci, the markers of double stand breaks (DSBs). Firstly, we sensitively compared the focus presence in nuclei during a long period of time post-irradiation (24 h) in spatially (three-dimensionally, 3D) fixed cells incubated and non-incubated with Pt nanoparticles by means of high-resolution immunofluorescence confocal microscopy. The data were compared with our preliminary results obtained for Au nanoparticles and recently published results for gadolinium (Gd) nanoparticles of approximately the same size (2–3 nm). Next, we introduced a novel super-resolution approach—single molecule localization microscopy (SMLM)—to study the internal structure of the repair foci. In these experiments, 10 nm Au nanoparticles were used that could be also visualized by SMLM. Altogether, the data show that different nanoparticles may or may not enhance radiation damage to DNA, so multi-parameter effects have to be considered to better interpret the radiosensitization. Based on these findings, we discussed on conclusions and contradictions related to the effectiveness and presumptive mechanisms of the cell radiosensitization by nanoparticles. We also demonstrate that SMLM offers new perspectives to study internal structures of repair foci with the goal to better evaluate potential differences in DNA damage patterns.
DOI:doi:10.3390/ijms20030588
URL:kostenfrei: Volltext: http://dx.doi.org/10.3390/ijms20030588
 kostenfrei: Volltext: https://www.mdpi.com/1422-0067/20/3/588
 DOI: https://doi.org/10.3390/ijms20030588
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:cancer radiotherapy
 damage to lysosomes
 DNA damage
 DNA double strand breaks (DSBs)
 DNA repair
 DNA repair foci
 metal nanoparticles
 single-molecule localization microscopy (SMLM)
 super-resolution microscopy
 tumor cell radiosensitization
K10plus-PPN:1588417026
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68367135   QR-Code
zum Seitenanfang