Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Wunderlich, Timo [VerfasserIn]   i
 Kungl, Ákos Ferenc [VerfasserIn]   i
 Müller, Eric [VerfasserIn]   i
 Hartel, Andreas [VerfasserIn]   i
 Stradmann, Yannik [VerfasserIn]   i
 Aamir, Syed Ahmed [VerfasserIn]   i
 Grübl, Andreas [VerfasserIn]   i
 Schreiber, Korbinian [VerfasserIn]   i
 Pehle, Christian [VerfasserIn]   i
 Billaudelle, Sebastian [VerfasserIn]   i
 Kiene, Gerd [VerfasserIn]   i
 Mauch, Christian [VerfasserIn]   i
 Schemmel, Johannes [VerfasserIn]   i
 Meier, Karlheinz [VerfasserIn]   i
 Petrovici, Mihai A. [VerfasserIn]   i
Titel:Demonstrating advantages of neuromorphic computation
Titelzusatz:a pilot study
Verf.angabe:Timo Wunderlich, Akos F. Kungl, Eric Müller, Andreas Hartel, Yannik Stradmann, Syed Ahmed Aamir, Andreas Grübl, Arthur Heimbrecht, Korbinian Schreiber, David Stöckel, Christian Pehle, Sebastian Billaudelle, Gerd Kiene, Christian Mauch, Johannes Schemmel, Karlheinz Meier and Mihai A. Petrovici
E-Jahr:2019
Jahr:26 March 2019
Umfang:15 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 28.05.2019
Titel Quelle:Enthalten in: Frontiers in neuroscience
Ort Quelle:Lausanne : Frontiers Research Foundation, 2007
Jahr Quelle:2019
Band/Heft Quelle:Volume 13 (March 2019) Artikel-Nummer 260, Seite 1-15, 15 Seiten
ISSN Quelle:1662-453X
Abstract:Neuromorphic devices represent an attempt to mimic aspects of the brain's architecture and dynamics with the aim of replicating its hallmark functional capabilities in terms of computational power, robust learning and energy efficiency. We employ a single-chip prototype of the BrainScaleS 2 neuromorphic system to implement a proof-of-concept demonstration of reward-modulated spike-timing-dependent plasticity in a spiking network that learns to play a simplified version of the Pong video game by smooth pursuit. This system combines an electronic mixed-signal substrate for emulating neuron and synapse dynamics with an embedded digital processor for on-chip learning, which in this work also serves to simulate the virtual environment and learning agent. The analog emulation of neuronal membrane dynamics enables a 1000-fold acceleration with respect to biological real-time, with the entire chip operating on a power budget of 57mW. Compared to an equivalent simulation using state-of-the-art software, the on-chip emulation is at least one order of magnitude faster and three orders of magnitude more energy-efficient. We demonstrate how on-chip learning can mitigate the effects of fixed-pattern noise, which is unavoidable in analog substrates, while making use of temporal variability for action exploration. Learning compensates imperfections of the physical substrate, as manifested in neuronal parameter variability, by adapting synaptic weights to match respective excitability of individual neurons.
DOI:doi:10.3389/fnins.2019.00260
URL:Volltext ; Verlag: https://doi.org/10.3389/fnins.2019.00260
 Volltext: https://www.frontiersin.org/articles/10.3389/fnins.2019.00260/full
 DOI: https://doi.org/10.3389/fnins.2019.00260
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:brainscales
 mixed-signal
 neuromorphic computing
 plasticity
 Reinforcement Learning
 Spiking neural network (SNN)
 STDP
K10plus-PPN:1666372897
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68393427   QR-Code
zum Seitenanfang