Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Wiedmann, Felix Tobias [VerfasserIn]   i
 Ratte, Antonius [VerfasserIn]   i
 Kraft, Manuel [VerfasserIn]   i
 Katus, Hugo [VerfasserIn]   i
 Schmidt, Constanze [VerfasserIn]   i
Titel:N-glycosylation-dependent regulation of hK2P17.1 currents
Verf.angabe:Felix Wiedmann, Daniel Schlund, Niels Voigt, Antonius Ratte, Manuel Kraft, Hugo A. Katus, Constanze Schmidt
E-Jahr:2019
Jahr:30 May 2019
Umfang:12 S.
Fussnoten:Gesehen am 27.06.2019
Titel Quelle:Enthalten in: Molecular biology of the cell
Ort Quelle:Bethesda, Md. : American Society for Cell Biology, 1992
Jahr Quelle:2019
Band/Heft Quelle:30(2019), 12, Seite 1425-1436
ISSN Quelle:1939-4586
Abstract:Two pore-domain potassium (K2P) channels mediate potassium background currents that stabilize the resting membrane potential and facilitate action potential repolarization. In the human heart, hK2P17.1 channels are predominantly expressed in the atria and Purkinje cells. Reduced atrial hK2P17.1 protein levels were described in patients with atrial fibrillation or heart failure. Genetic alterations in hK2P17.1 were associated with cardiac conduction disorders. Little is known about posttranslational modifications of hK2P17.1. Here, we characterized glycosylation of hK2P17.1 and investigated how glycosylation alters its surface expression and activity. Wild-type hK2P17.1 channels and channels lacking specific glycosylation sites were expressed in Xenopus laevis oocytes, HEK-293T cells, and HeLa cells. N-glycosylation was disrupted using N-glycosidase F and tunicamycin. hK2P17.1 expression and activity were assessed using immunoblot analysis and a two-electrode voltage clamp technique. Channel subunits of hK2P17.1 harbor two functional N-glycosylation sites at positions N65 and N94. In hemi-glycosylated hK2P17.1 channels, functionality and membrane trafficking remain preserved. Disruption of both N-glycosylation sites results in loss of hK2P17.1 currents, presumably caused by impaired surface expression. This study confirms diglycosylation of hK2P17.1 channel subunits and its pivotal role in cell-surface targeting. Our findings underline the functional relevance of N-glycosylation in biogenesis and membrane trafficking of ion channels.
DOI:doi:10.1091/mbc.E18-10-0687
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag ; Resolving-System: https://doi.org/10.1091/mbc.E18-10-0687
 Volltext: https://www.molbiolcell.org/doi/10.1091/mbc.E18-10-0687
 DOI: https://doi.org/10.1091/mbc.E18-10-0687
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1668019078
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68402094   QR-Code
zum Seitenanfang