Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Bautista, Miguel [VerfasserIn]   i
Titel:Error-correcting factorization
Verf.angabe:Miguel Ángel Bautista Martin, Oriol Pujol, Fernando de la Torre, and Sergio Escalera
E-Jahr:2018
Jahr:[October 2018]
Umfang:14 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 14.10.2019
Titel Quelle:Enthalten in: Institute of Electrical and Electronics EngineersIEEE transactions on pattern analysis and machine intelligence
Ort Quelle:New York, NY : IEEE, 1979
Jahr Quelle:2018
Band/Heft Quelle:40(2018), 10, Seite 2388-2401
ISSN Quelle:1939-3539
Abstract:Error Correcting Output Codes (ECOC) is a successful technique in multi-class classification, which is a core problem in Pattern Recognition and Machine Learning. A major advantage of ECOC over other methods is that the multi-class problem is decoupled into a set of binary problems that are solved independently. However, literature defines a general error-correcting capability for ECOCs without analyzing how it distributes among classes, hindering a deeper analysis of pair-wise error-correction. To address these limitations this paper proposes an Error-Correcting Factorization (ECF) method. Our contribution is three fold: (I) We propose a novel representation of the error-correction capability, called the design matrix, that enables us to build an ECOC on the basis of allocating correction to pairs of classes. (II) We derive the optimal code length of an ECOC using rank properties of the design matrix. (III) ECF is formulated as a discrete optimization problem, and a relaxed solution is found using an efficient constrained block coordinate descent approach. (IV) Enabled by the flexibility introduced with the design matrix we propose to allocate the error-correction on classes that are prone to confusion. Experimental results in several databases show that when allocating the error-correction to confusable classes ECF outperforms state-of-the-art approaches.
DOI:doi:10.1109/TPAMI.2017.2763146
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1109/TPAMI.2017.2763146
 DOI: https://doi.org/10.1109/TPAMI.2017.2763146
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:binary problems
 Boosting
 confusable classes
 core problem
 design matrix
 discrete optimization problem
 ECOC
 Electronic mail
 Encoding
 error correcting output codes
 error correction
 error correction codes
 error-correcting factorization method
 Error-correcting output codes
 error-correction capability
 general error-correcting capability
 learning (artificial intelligence)
 Market research
 matrix factorization
 multi-class learning
 multiclass classification
 multiclass problem
 optimal code length
 optimisation
 Optimization
 pair-wise error-correction
 pattern classification
 pattern recognition
 Support vector machines
K10plus-PPN:1678801321
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68440077   QR-Code
zum Seitenanfang