Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Krasowski, Nikola Enrico [VerfasserIn]   i
 Beier, Thorsten [VerfasserIn]   i
 Köthe, Ullrich [VerfasserIn]   i
 Hamprecht, Fred [VerfasserIn]   i
 Kreshuk, Anna [VerfasserIn]   i
Titel:Neuron segmentation with high-level biological priors
Verf.angabe:N. E. Krasowski, T. Beier, G. W. Knott, U. Köthe, F. A. Hamprecht, and A. Kreshuk
Jahr:2018
Jahr des Originals:2017
Umfang:11 S.
Fussnoten:Publication: 06 June 2017 ; Gesehen am 28.10.2019
Titel Quelle:Enthalten in: Institute of Electrical and Electronics EngineersIEEE transactions on medical imaging
Ort Quelle:New York, NY : Institute of Electrical and Electronics Engineers, 1982
Jahr Quelle:2018
Band/Heft Quelle:37(2018), 4, Seite 829-839
ISSN Quelle:1558-254X
Abstract:We present a novel approach to the problem of neuron segmentation in image volumes acquired by an electron microscopy. Existing methods, such as agglomerative or correlation clustering, rely solely on boundary evidence and have problems where such an evidence is lacking (e.g., incomplete staining) or ambiguous (e.g., co-located cell and mitochondria membranes). We investigate if these difficulties can be overcome by means of sparse region appearance cues that differentiate between pre- and postsynaptic neuron segments in mammalian neural tissue. We combine these cues with the traditional boundary evidence in the asymmetric multiway cut (AMWC) model, which simultaneously solves the partitioning and the semantic region labeling problems. We show that AMWC problems over superpixel graphs can be solved to global optimality with a cutting plane approach, and that the introduction of semantic class priors leads to significantly better segmentations.
DOI:doi:10.1109/TMI.2017.2712360
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: http://dx.doi.org/10.1109/TMI.2017.2712360
 DOI: https://doi.org/10.1109/TMI.2017.2712360
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:agglomerative correlation clustering
 Algorithms
 AMWC problems
 Animals
 asymmetric multiway cut model
 automated tracing
 biological tissues
 Biomembranes
 co-located cell
 connectomics
 cutting plane approach
 electron microscopy
 graph theory
 high-level biological priors
 Image edge detection
 Image Processing, Computer-Assisted
 image resolution
 image segmentation
 Image segmentation
 image volumes
 incomplete staining
 Labeling
 mammalian neural tissue
 medical image processing
 Mice
 Microscopy, Electron
 mitochondria membranes
 neuron segmentation
 Neurons
 pattern clustering
 postsynaptic neuron segments
 probabilistic graphical model
 Segmentation
 semantic class priors
 semantic region labeling problems
 Semantics
 sparse region appearance cues
K10plus-PPN:1680043676
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68446675   QR-Code
zum Seitenanfang