Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Kungl, Ákos Ferenc [VerfasserIn]   i
 Schmitt, Sebastian [VerfasserIn]   i
 Baumbach, Andreas [VerfasserIn]   i
 Dold, Dominik [VerfasserIn]   i
 Müller, Eric [VerfasserIn]   i
 Kleider, Mitja [VerfasserIn]   i
 Mauch, Christian [VerfasserIn]   i
 Breitwieser, Oliver [VerfasserIn]   i
 Leng, Luziwei [VerfasserIn]   i
 Güttler, Gilbert Maurice [VerfasserIn]   i
 Husmann, Dan [VerfasserIn]   i
 Karasenko, Vitali [VerfasserIn]   i
 Grübl, Andreas [VerfasserIn]   i
 Schemmel, Johannes [VerfasserIn]   i
 Petrovici, Mihai A. [VerfasserIn]   i
Titel:Accelerated physical emulation of bayesian inference in spiking neural networks
Verf.angabe:Akos F. Kungl, Sebastian Schmitt, Johann Klähn, Paul Müller, Andreas Baumbach, Dominik Dold, Alexander Kugele, Eric Müller, Christoph Koke, Mitja Kleider, Christian Mauch, Oliver Breitwieser, Luziwei Leng, Nico Gürtler, Maurice Güttler, Dan Husmann, Kai Husmann, Andreas Hartel, Vitali Karasenko, Andreas Grübl, Johannes Schemmel, Karlheinz Meier and Mihai A. Petrovici
E-Jahr:2019
Jahr:14 November 2019
Umfang:15 S.
Fussnoten:Gesehen am 20.12.2019
Titel Quelle:Enthalten in: Frontiers in neuroscience
Ort Quelle:Lausanne : Frontiers Research Foundation, 2007
Jahr Quelle:2019
Band/Heft Quelle:13(2019) Artikel-Nummer 1201, 15 Seiten
ISSN Quelle:1662-453X
Abstract:The massively parallel nature of biological information processing plays an important role for its superiority to human-engineered computing devices. In particular, it may hold the key to overcoming the von Neumann bottleneck that limits contemporary computer architectures. Physical-model neuromorphic devices seek to replicate not only this inherent parallelism, but also aspects of its microscopic dynamics in analog circuits emulating neurons and synapses. However, these machines require network models that are not only adept at solving particular tasks, but that can also cope with the inherent imperfections of analog substrates. We present a spiking network model that performs Bayesian inference through sampling on the BrainScaleS neuromorphic platform, where we use it for generative and discriminative computations on visual data. By illustrating its functionality on this platform, we implicitly demonstrate its robustness to various substrate-specific distortive effects, as well as its accelerated capability for computation. These results showcase the advantages of brain-inspired physical computation and provide important building blocks for large-scale neuromorphic applications.
DOI:doi:10.3389/fnins.2019.01201
URL:Volltext: https://doi.org/10.3389/fnins.2019.01201
 Verlag: https://www.frontiersin.org/articles/10.3389/fnins.2019.01201/full
 DOI: https://doi.org/10.3389/fnins.2019.01201
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:massively parallel computing
 neural sampling
 neuromorphic engineering
 physical models
 Probabilistic inference
 recurrent neural networks
 spiking neurons
K10plus-PPN:1686150369
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68470224   QR-Code
zum Seitenanfang