Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Wirbel, Jakob [VerfasserIn]   i
 Cutillas, Pedro [VerfasserIn]   i
 Sáez Rodríguez, Julio [VerfasserIn]   i
Titel:Phosphoproteomics-based profiling of kinase activities in cancer cells
Verf.angabe:Jakob Wirbel, Pedro Cutillas, and Julio Saez-Rodriguez
E-Jahr:2018
Jahr:18 January 2018
Umfang:30 S.
Fussnoten:Gesehen am 01.04.2020
Titel Quelle:Enthalten in: Cancer Systems Biology
Ort Quelle:New York, NY : Humana Press, 2018
Jahr Quelle:2018
Band/Heft Quelle:(2018), Seite 103-132
ISBN Quelle:978-1-4939-7493-1
Abstract:Cellular signaling, predominantly mediated by phosphorylation through protein kinases, is found to be deregulated in most cancers. Accordingly, protein kinases have been subject to intense investigations in cancer research, to understand their role in oncogenesis and to discover new therapeutic targets. Despite great advances, an understanding of kinase dysfunction in cancer is far from complete. A powerful tool to investigate phosphorylation is mass-spectrometry (MS)-based phosphoproteomics, which enables the identification of thousands of phosphorylated peptides in a single experiment. Since every phosphorylation event results from the activity of a protein kinase, high-coverage phosphoproteomics data should indirectly contain comprehensive information about the activity of protein kinases. In this chapter, we discuss the use of computational methods to predict kinase activity scores from MS-based phosphoproteomics data. We start with a short explanation of the fundamental features of the phosphoproteomics data acquisition process from the perspective of the computational analysis. Next, we briefly review the existing databases with experimentally verified kinase-substrate relationships and present a set of bioinformatic tools to discover novel kinase targets. We then introduce different methods to infer kinase activities from phosphoproteomics data and these kinase-substrate relationships. We illustrate their application with a detailed protocol of one of the methods, KSEA (Kinase Substrate Enrichment Analysis). This method is implemented in Python within the framework of the open-source Kinase Activity Toolbox (kinact), which is freely available at http://github.com/saezlab/kinact/.
DOI:doi:10.1007/978-1-4939-7493-1_6
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1007/978-1-4939-7493-1_6
 DOI: https://doi.org/10.1007/978-1-4939-7493-1_6
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1693668718
Verknüpfungen:→ Sammelwerk

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68560080   QR-Code
zum Seitenanfang