Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Piatkowski, Stephan-Marian [VerfasserIn]   i
 Müthing, Steffen [VerfasserIn]   i
 Bastian, Peter [VerfasserIn]   i
Titel:A stable and high-order accurate discontinuous Galerkin based splitting method for the incompressible Navier-Stokes equations
Verf.angabe:Marian Piatkowski, Steffen Müthing, Peter Bastian
Jahr:2018
Jahr des Originals:2017
Umfang:20 S.
Fussnoten:Available online: 5 December 2017 ; Gesehen am 21.04.2020
Titel Quelle:Enthalten in: Journal of computational physics
Ort Quelle:Amsterdam : Elsevier, 1961
Jahr Quelle:2018
Band/Heft Quelle:356(2018), Seite 220-239
ISSN Quelle:1090-2716
Abstract:In this paper we consider discontinuous Galerkin (DG) methods for the incompressible Navier-Stokes equations in the framework of projection methods. In particular we employ symmetric interior penalty DG methods within the second-order rotational incremental pressure correction scheme. The major focus of the paper is threefold: i) We propose a modified upwind scheme based on the Vijayasundaram numerical flux that has favourable properties in the context of DG. ii) We present a novel postprocessing technique in the Helmholtz projection step based on H(div) reconstruction of the pressure correction that is computed locally, is a projection in the discrete setting and ensures that the projected velocity satisfies the discrete continuity equation exactly. As a consequence it also provides local mass conservation of the projected velocity. iii) Numerical results demonstrate the properties of the scheme for different polynomial degrees applied to two-dimensional problems with known solution as well as large-scale three-dimensional problems. In particular we address second-order convergence in time of the splitting scheme as well as its long-time stability.
DOI:doi:10.1016/j.jcp.2017.11.035
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1016/j.jcp.2017.11.035
 Volltext: http://www.sciencedirect.com/science/article/pii/S0021999117308732
 DOI: https://doi.org/10.1016/j.jcp.2017.11.035
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:High-order discontinuous Galerkin
 Incompressibility
 Navier-Stokes equations
 Projection methods
K10plus-PPN:1695561597
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68568804   QR-Code
zum Seitenanfang