Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Lohse, Christian [VerfasserIn]   i
 Bassett, Danielle S. [VerfasserIn]   i
 Lim, Kelvin O. [VerfasserIn]   i
 Carlson, Jean M. [VerfasserIn]   i
Titel:Resolving anatomical and functional structure in human brain organization
Titelzusatz:identifying mesoscale organization in weighted network representations
Verf.angabe:Christian Lohse, Danielle S. Bassett, Kelvin O. Lim, Jean M. Carlson
E-Jahr:2014
Jahr:October 2, 2014
Fussnoten:Gesehen am 16.07.2020
Titel Quelle:Enthalten in: Public Library of SciencePLoS Computational Biology
Ort Quelle:San Francisco, Calif. : Public Library of Science, 2005
Jahr Quelle:2014
Band/Heft Quelle:10(2014,10) Artikel-Nummer e1003712, 17 Seiten
ISSN Quelle:1553-7358
Abstract:Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.
DOI:doi:10.1371/journal.pcbi.1003712
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1371/journal.pcbi.1003712
 Volltext: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003712
 DOI: https://doi.org/10.1371/journal.pcbi.1003712
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Artificial neural networks
 Community structure
 Fractals
 Functional magnetic resonance imaging
 Graphs
 Network analysis
 Neural networks
 Schizophrenia
K10plus-PPN:1725019639
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68617809   QR-Code
zum Seitenanfang