Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Bachl, Fabian [VerfasserIn]   i
 Lenkoski, Alex [VerfasserIn]   i
 Thorarinsdottir, Thordis [VerfasserIn]   i
 Garbe, Christoph S. [VerfasserIn]   i
Titel:Bayesian motion estimation for dust aerosols
Verf.angabe:by Fabian E. Bachl, Alex Lenkoski, Thordis L. Thorarinsdottir and Christoph S. Garbe
E-Jahr:2015
Jahr:2 November 2015
Umfang:30 S.
Fussnoten:Gesehen am 29.07.2020
Titel Quelle:Enthalten in: The annals of applied statistics
Ort Quelle:Beachwood, Ohio : Inst. of Mathematical Statistics (IMS), 2007
Jahr Quelle:2015
Band/Heft Quelle:9(2015), 3, Seite 1298-1327
ISSN Quelle:1941-7330
Abstract:Dust storms in the earth’s major desert regions significantly influence microphysical weather processes, the CO22_{2}-cycle and the global climate in general. Recent increases in the spatio-temporal resolution of remote sensing instruments have created new opportunities to understand these phenomena. However, the scale of the data collected and the inherent stochasticity of the underlying process pose significant challenges, requiring a careful combination of image processing and statistical techniques. Using satellite imagery data, we develop a statistical model of atmospheric transport that relies on a latent Gaussian Markov random field (GMRF) for inference. In doing so, we make a link between the optical flow method of Horn and Schunck and the formulation of the transport process as a latent field in a generalized linear model. We critically extend this framework to satisfy the integrated continuity equation, thereby incorporating a flow field with nonzero divergence, and show that such an approach dramatically improves performance while remaining computationally feasible. Effects such as air compressibility and satellite column projection hence become intrinsic parts of this model. We conclude with a study of the dynamics of dust storms formed over Saharan Africa and show that our methodology is able to accurately and coherently track storm movement, a critical problem in this field.
DOI:doi:10.1214/15-AOAS835
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1214/15-AOAS835
 Volltext: https://projecteuclid.org/euclid.aoas/1446488740
 DOI: https://doi.org/10.1214/15-AOAS835
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Gaussian Markov random field
 Horn and Schunck model
 integrated continuity equation
 integrated nested Laplace approximation (INLA)
 optical flow
 remote sensing
 Saharan dust storm
 satellite data
 storm tracking
K10plus-PPN:1725823756
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68621704   QR-Code
zum Seitenanfang