Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Banerjee, Sambaran [VerfasserIn]   i
 Belczynski, K. [VerfasserIn]   i
 Fryer, C. L. [VerfasserIn]   i
 Berczik, Peter [VerfasserIn]   i
 Hurley, J. R. [VerfasserIn]   i
 Spurzem, Rainer [VerfasserIn]   i
 Wang, L. [VerfasserIn]   i
Titel:BSE versus StarTrack
Titelzusatz:implementations of new wind, remnant-formation, and natal-kick schemes in NBODY7 and their astrophysical consequences
Verf.angabe:S. Banerjee, K. Belczynski, C.L. Fryer, P. Berczik, J.R. Hurley, R. Spurzem, and L. Wang
E-Jahr:2020
Jahr:07 July 2020
Fussnoten:Gesehen am 07.09.2020
Titel Quelle:Enthalten in: Astronomy and astrophysics
Ort Quelle:Les Ulis : EDP Sciences, 1969
Jahr Quelle:2020
Band/Heft Quelle:639(2020) Artikel-Nummer A41, 22 Seiten
ISSN Quelle:1432-0746
Abstract:Context. As a result of their formation via massive single and binary stellar evolution, the masses of stellar-remnant black holes (BH) are subjects of great interest in this era of gravitational-wave detection from binary black hole (BBH) and binary neutron star merger events. Aims. In this work, we present new developments in the stellar-remnant formation and related schemes of the current <i>N<i/>-body evolution program NBODY7. We demonstrate that the newly implemented stellar-wind and remnant-formation schemes in the stellar-evolutionary sector or BSE of the NBODY7 code, such as the “rapid” and the “delayed” supernova (SN) schemes along with an implementation of pulsational-pair-instability and pair-instability supernova (PPSN/PSN), now produce neutron star (NS) and BH masses that agree nearly perfectly, over large ranges of zero-age-main-sequence (ZAMS) mass and metallicity, with those from the widely recognised StarTrack population-synthesis program. We also demonstrate the new, recipe-based implementations of various widely debated mechanisms of natal kicks on NSs and BHs, such as “convection-asymmetry-driven”, “collapse-asymmetry-driven”, and “neutrino-emission-driven” kicks, in addition to a fully consistent implementation of the standard, fallback-dependent, momentum-conserving natal kick.<i>Methods.<i/> All the above newly implemented schemes are also shared with the standalone versions of SSE and BSE. All these demonstrations are performed with both the updated standalone BSE and the updated NBODY7/BSE.<i>Results.<i/> When convolved with stellar and primordial-binary populations as observed in young massive clusters, such remnant-formation and natal-kick mechanisms crucially determine the accumulated number, mass, and mass distribution of the BHs retained in young massive, open, and globular clusters (GCs); these BHs would eventually become available for long-term dynamical processing. Conclusions. Among other conclusions, we find that although the newer, delayed SN remnant formation model gives birth to the largest number (mass) of BHs, the older remnant-formation schemes cause the largest number (mass) of BHs to survive in clusters, when incorporating SN material fallback onto the BHs. The SN material fallback also causes the convection-asymmetry-driven SN kick to effectively retain similar numbers and masses of BHs in clusters as for the standard, momentum-conserving kick. The collapse-asymmetry-driven SN kick would cause nearly all BHs to be retained in clusters irrespective of their mass, remnant-formation model, and metallicity, whereas the inference of a large population of BHs in GCs would potentially rule out the neutrino-driven SN kick mechanism. Pre-SN mergers of massive primordial binaries would potentially cause BH masses to deviate from the theoretical, single-star ZAMS to mass-remnant mass relation unless a substantial of the total merging stellar mass of up to ≈40% is lost during a merger process. In particular, such mergers, at low metallicities, have the potential to produce low-spinning BHs within the PSN mass gap that can be retained in a stellar cluster and be available for subsequent dynamical interactions. As recent studies indicate, the new remnant-formation modelling reassures us that young massive and open clusters would potentially contribute to the dynamical BBH merger detection rate to a similar extent as their more massive GC counterparts.
DOI:doi:10.1051/0004-6361/201935332
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1051/0004-6361/201935332
 Volltext: https://www.aanda.org/articles/aa/abs/2020/07/aa35332-19/aa35332-19.html
 DOI: https://doi.org/10.1051/0004-6361/201935332
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1728973759
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68635167   QR-Code
zum Seitenanfang