Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Verfasst von:Hall, Patrick [VerfasserIn]   i
 Gill, Navdeep [VerfasserIn]   i
 Cox, Benjamin [VerfasserIn]   i
Titel:Responsible Machine Learning
Institutionen:Safari, an O’Reilly Media Company. [MitwirkendeR]   i
Verf.angabe:Hall, Patrick
Ausgabe:1st edition
Verlagsort:[Erscheinungsort nicht ermittelbar]
Verlag:O'Reilly Media, Inc.
Jahr:2020
Umfang:1 online resource (77 pages)
Fussnoten:Online resource; Title from title page (viewed October 6, 2020)
Abstract:Like other powerful technologies, AI and machine learning present significant opportunities. To reap the full benefits of ML, organizations must also mitigate the considerable risks it presents. This report outlines a set of actionable best practices for people, processes, and technology that can enable organizations to innovate with ML in a responsible manner. Authors Patrick Hall, Navdeep Gill, and Ben Cox focus on the technical issues of ML as well as human-centered issues such as security, fairness, and privacy. The goal is to promote human safety in ML practices so that in the near future, there will be no need to differentiate between the general practice and the responsible practice of ML. This report explores: People: Humans in the Loop —Why an organization’s ML culture is an important aspect of responsible ML practice Processes: Taming the Wild West of Machine Learning Workflows —Suggestions for changing or updating your processes to govern ML assets Technology: Engineering ML for Human Trust and Understanding —Tools that can help organizations build human trust and understanding into their ML systems Actionable Responsible ML Guidance —Core considerations for companies that want to drive value from ML
ComputerInfo:Mode of access: World Wide Web.
URL:Aggregator: https://learning.oreilly.com/library/view/-/9781492090878/?ar
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Electronic books ; local
K10plus-PPN:1736158910
 
 
Lokale URL UB: Zum Volltext
 
 Bibliothek der Medizinischen Fakultät Mannheim der Universität Heidelberg
 Klinikum MA Bestellen/Vormerken für Benutzer des Klinikums Mannheim
Eigene Kennung erforderlich
Bibliothek/Idn:UW / m3784037550
Lokale URL Inst.: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68651644   QR-Code
zum Seitenanfang