Skip navigation
University library of Heidelberg
Availability: reference only

Verfügbarkeit
Location: ---
Copies: ---
heiBIB
 Online resource
Verfasst von:Neugebauer, Marcel [VerfasserIn]   i
 Fischer, Laurin [VerfasserIn]   i
 Jäger, Alexander [VerfasserIn]   i
 Czischek, Stefanie [VerfasserIn]   i
 Jochim, Selim [VerfasserIn]   i
 Weidemüller, Matthias [VerfasserIn]   i
 Gärttner, Martin [VerfasserIn]   i
Titel:Neural-network quantum state tomography in a two-qubit experiment
Verf.angabe:Marcel Neugebauer, Laurin Fischer, Alexander Jäger, Stefanie Czischek, Selim Jochim, Matthias Weidemüller, and Martin Gärttner
E-Jahr:2020
Jahr:9 October 2020
Umfang:7 S.
Fussnoten:Gesehen am 12.11.2020
Titel Quelle:Enthalten in: Physical review
Ort Quelle:Woodbury, NY : Inst., 2016
Jahr Quelle:2020
Band/Heft Quelle:102(2020,4) Artikel-Nummer 042604, 7 Seiten
ISSN Quelle:2469-9934
Abstract:We study the performance of efficient quantum state tomography methods based on neural-network quantum states using measured data from a two-photon experiment. Machine-learning-inspired variational methods provide a promising route towards scalable state characterization for quantum simulators. While the power of these methods has been demonstrated on synthetic data, applications to real experimental data remain scarce. We benchmark and compare several such approaches by applying them to measured data from an experiment producing two-qubit entangled states. We find that in the presence of experimental imperfections and noise, confining the variational manifold to physical states, i.e., to positive semidefinite density matrices, greatly improves the quality of the reconstructed states but renders the learning procedure more demanding. Including additional, possibly unjustified, constraints, such as assuming pure states, facilitates learning, but also biases the estimator.
DOI:doi:10.1103/PhysRevA.102.042604
URL:Bibliographic entry. University members only receive access to full-texts for open access or licensed publications.

Volltext ; Verlag: https://doi.org/10.1103/PhysRevA.102.042604
 Volltext: https://link.aps.org/doi/10.1103/PhysRevA.102.042604
 DOI: https://doi.org/10.1103/PhysRevA.102.042604
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1738561836
Verknüpfungen:→ Journal

Permanent link to this item:  https://katalog.ub.uni-heidelberg.de/titel/68660334   QR-Code
zum Seitenanfang