| Online resource |
Verfasst von: | Neugebauer, Marcel [VerfasserIn]  |
| Fischer, Laurin [VerfasserIn]  |
| Jäger, Alexander [VerfasserIn]  |
| Czischek, Stefanie [VerfasserIn]  |
| Jochim, Selim [VerfasserIn]  |
| Weidemüller, Matthias [VerfasserIn]  |
| Gärttner, Martin [VerfasserIn]  |
Titel: | Neural-network quantum state tomography in a two-qubit experiment |
Verf.angabe: | Marcel Neugebauer, Laurin Fischer, Alexander Jäger, Stefanie Czischek, Selim Jochim, Matthias Weidemüller, and Martin Gärttner |
E-Jahr: | 2020 |
Jahr: | 9 October 2020 |
Umfang: | 7 S. |
Fussnoten: | Gesehen am 12.11.2020 |
Titel Quelle: | Enthalten in: Physical review |
Ort Quelle: | Woodbury, NY : Inst., 2016 |
Jahr Quelle: | 2020 |
Band/Heft Quelle: | 102(2020,4) Artikel-Nummer 042604, 7 Seiten |
ISSN Quelle: | 2469-9934 |
Abstract: | We study the performance of efficient quantum state tomography methods based on neural-network quantum states using measured data from a two-photon experiment. Machine-learning-inspired variational methods provide a promising route towards scalable state characterization for quantum simulators. While the power of these methods has been demonstrated on synthetic data, applications to real experimental data remain scarce. We benchmark and compare several such approaches by applying them to measured data from an experiment producing two-qubit entangled states. We find that in the presence of experimental imperfections and noise, confining the variational manifold to physical states, i.e., to positive semidefinite density matrices, greatly improves the quality of the reconstructed states but renders the learning procedure more demanding. Including additional, possibly unjustified, constraints, such as assuming pure states, facilitates learning, but also biases the estimator. |
DOI: | doi:10.1103/PhysRevA.102.042604 |
URL: | Bibliographic entry. University members only receive access to full-texts for open access or licensed publications.
Volltext ; Verlag: https://doi.org/10.1103/PhysRevA.102.042604 |
| Volltext: https://link.aps.org/doi/10.1103/PhysRevA.102.042604 |
| DOI: https://doi.org/10.1103/PhysRevA.102.042604 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1738561836 |
Verknüpfungen: | → Journal |
Neural-network quantum state tomography in a two-qubit experiment / Neugebauer, Marcel [VerfasserIn]; 9 October 2020 (Online-Ressource)