Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Yuan, Jui-Hung [VerfasserIn]   i
 Han, Sungho Bosco [VerfasserIn]   i
 Richter, Stefan [VerfasserIn]   i
 Wade, Rebecca C. [VerfasserIn]   i
 Kokh, Daria B. [VerfasserIn]   i
Titel:Druggability assessment in TRAPP using machine learning approaches
Verf.angabe:Jui-Hung Yuan, Sungho Bosco Han, Stefan Richter, Rebecca C. Wade and Daria B. Kokh
E-Jahr:2020
Jahr:27 February 2020
Umfang:15 S.
Fussnoten:Gesehen am 16.12.2020
Titel Quelle:Enthalten in: Journal of chemical information and modeling
Ort Quelle:Washington, DC : American Chemical Society, 1975
Jahr Quelle:2020
Band/Heft Quelle:60(2020), 3, Seite 1685-1699
ISSN Quelle:1549-960X
Abstract:Accurate protein druggability predictions are important for the selection of drug targets in the early stages of drug discovery. Because of the flexible nature of proteins, the druggability of a binding pocket may vary due to conformational changes. We have therefore developed two statistical models, a logistic regression model (TRAPP-LR) and a convolutional neural network model (TRAPP-CNN), for predicting druggability and how it varies with changes in the spatial and physicochemical properties of a binding pocket. These models are integrated into TRAnsient Pockets in Proteins (TRAPP), a tool for the analysis of binding pocket variations along a protein motion trajectory. The models, which were trained on publicly available and self-augmented datasets, show equivalent or superior performance to existing methods on test sets of protein crystal structures and have sufficient sensitivity to identify potentially druggable protein conformations in trajectories from molecular dynamics simulations. Visualization of the evidence for the decisions of the models in TRAPP facilitates identification of the factors affecting the druggability of protein binding pockets.
DOI:doi:10.1021/acs.jcim.9b01185
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1021/acs.jcim.9b01185
 DOI: https://doi.org/10.1021/acs.jcim.9b01185
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1743029640
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68673890   QR-Code
zum Seitenanfang