| Online-Ressource |
Verfasst von: | Wentzensen, Nicolas [VerfasserIn]  |
| Lahrmann, Bernd [VerfasserIn]  |
| Clarke, Megan A [VerfasserIn]  |
| Kinney, Walter [VerfasserIn]  |
| Tokugawa, Diane [VerfasserIn]  |
| Poitras, Nancy [VerfasserIn]  |
| Locke, Alex [VerfasserIn]  |
| Bartels, Liam [VerfasserIn]  |
| Krauthoff, Alexandra [VerfasserIn]  |
| Walker, Joan [VerfasserIn]  |
| Zuna, Rosemary [VerfasserIn]  |
| Grewal, Kiranjit K [VerfasserIn]  |
| Goldhoff, Patricia E [VerfasserIn]  |
| Kingery, Julie D [VerfasserIn]  |
| Castle, Philip E [VerfasserIn]  |
| Schiffman, Mark [VerfasserIn]  |
| Lorey, Thomas S [VerfasserIn]  |
| Grabe, Niels [VerfasserIn]  |
Titel: | Accuracy and efficiency of deep-learning-based automation of dual stain cytology in cervical cancer screening |
Verf.angabe: | Nicolas Wentzensen, MD, Bernd Lahrmann, PhD, Megan A. Clarke, PhD, Walter Kinney, MD, Diane Tokugawa, MD, Nancy Poitras, BS, Alex Locke, MD, Liam Bartels, BS, Alexandra Krauthoff, BS, Joan Walker, MD, Rosemary Zuna, MD, Kiranjit K. Grewal, MS, Patricia E. Goldhoff, MD, Julie D. Kingery, MD, Philip E. Castle, PhD, Mark Schiffman, MD, Thomas S. Lorey, MD, Niels Grabe, PhD |
Jahr: | 2021 |
Jahr des Originals: | 2020 |
Umfang: | 8 S. |
Teil: | volume:113 |
| year:2021 |
| number:1 |
| pages:72-79 |
| extent:8 |
Fussnoten: | Gesehen am 02.03.2021 ; First published online June 25, 2020 |
Titel Quelle: | Enthalten in: National Cancer InstituteJournal of the National Cancer Institute |
Ort Quelle: | Oxford : Oxford Univ. Press, 1941 |
Jahr Quelle: | 2021 |
Band/Heft Quelle: | 113(2021), 1, Seite 72-79 |
ISSN Quelle: | 1460-2105 |
Abstract: | With the advent of primary human papillomavirus testing followed by cytology for cervical cancer screening, visual interpretation of cytology slides remains the last subjective analysis step and suffers from low sensitivity and reproducibility.We developed a cloud-based whole-slide imaging platform with a deep-learning classifier for p16/Ki-67 dual-stained (DS) slides trained on biopsy-based gold standards. We compared it with conventional Pap and manual DS in 3 epidemiological studies of cervical and anal precancers from Kaiser Permanente Northern California and the University of Oklahoma comprising 4253 patients. All statistical tests were 2-sided.In independent validation at Kaiser Permanente Northern California, artificial intelligence (AI)-based DS had lower positivity than cytology (P < .001) and manual DS (P < .001) with equal sensitivity and substantially higher specificity compared with both Pap (P < .001) and manual DS (P < .001), respectively. Compared with Pap, AI-based DS reduced referral to colposcopy by one-third (41.9% vs 60.1%, P < .001). At a higher cutoff, AI-based DS had similar performance to high-grade squamous intraepithelial lesions cytology, indicating a risk high enough to allow for immediate treatment. The classifier was robust, showing comparable performance in 2 cytology systems and in anal cytology.Automated DS evaluation removes the remaining subjective component from cervical cancer screening and delivers consistent quality for providers and patients. Moving from Pap to automated DS substantially reduces the number of colposcopies and also achieves excellent performance in a simulated fully vaccinated population. Through cloud-based implementation, this approach is globally accessible. Our results demonstrate that AI not only provides automation and objectivity but also delivers a substantial benefit for women by reduction of unnecessary colposcopies. |
DOI: | doi:10.1093/jnci/djaa066 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext ; Verlag: https://doi.org/10.1093/jnci/djaa066 |
| Volltext: https://academic.oup.com/jnci/article/113/1/72/5862008 |
| DOI: https://doi.org/10.1093/jnci/djaa066 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1750115646 |
Verknüpfungen: | → Zeitschrift |
Accuracy and efficiency of deep-learning-based automation of dual stain cytology in cervical cancer screening / Wentzensen, Nicolas [VerfasserIn]; 2021 (Online-Ressource)