Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Grigaitis, Pranas [VerfasserIn]   i
 Olivier, Brett G. [VerfasserIn]   i
 Fiedler, Tomas [VerfasserIn]   i
 Teusink, Bas [VerfasserIn]   i
 Kummer, Ursula [VerfasserIn]   i
 Veith, Nadine [VerfasserIn]   i
Titel:Protein cost allocation explains metabolic strategies in Escherichia coli
Verf.angabe:Pranas Grigaitis, Brett G. Olivier, Tomas Fiedler, Bas Teusink, Ursula Kummer, Nadine Veith
Jahr:2021
Jahr des Originals:2020
Umfang:10 S.
Teil:volume:327
 year:2021
 pages:54-63
 extent:10
Fussnoten:Available online 10 December 2020 ; Gesehen am 31.03.2021
Titel Quelle:Enthalten in: Journal of biotechnology
Ort Quelle:Amsterdam [u.a.] : Elsevier Science, 1984
Jahr Quelle:2021
Band/Heft Quelle:327(2021), Seite 54-63
ISSN Quelle:1873-4863
Abstract:In-depth understanding of microbial growth is crucial for the development of new advances in biotechnology and for combating microbial pathogens. Condition-specific proteome expression is central to microbial physiology and growth. A multitude of processes are dependent on the protein expression, thus, whole-cell analysis of microbial metabolism using genome-scale metabolic models is an attractive toolset to investigate the behaviour of microorganisms and their communities. However, genome-scale models that incorporate macromolecular expression are still inhibitory complex: the conceptual and computational complexity of these models severely limits their potential applications. In the need for alternatives, here we revisit some of the previous attempts to create genome-scale models of metabolism and macromolecular expression to develop a novel framework for integrating protein abundance and turnover costs to conventional genome-scale models. We show that such a model of Escherichia coli successfully reproduces experimentally determined adaptations of metabolism in a growth condition-dependent manner. Moreover, the model can be used as means of investigating underutilization of the protein machinery among different growth settings. Notably, we obtained strongly improved predictions of flux distributions, considering the costs of protein translation explicitly. This finding in turn suggests protein translation being the main regulation hub for cellular growth.
DOI:doi:10.1016/j.jbiotec.2020.11.003
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1016/j.jbiotec.2020.11.003
 Volltext: https://www.sciencedirect.com/science/article/pii/S0168165620303047
 DOI: https://doi.org/10.1016/j.jbiotec.2020.11.003
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Genome-scale models
 Microbial metabolism
 Quantitative proteomics
 Resource allocation
K10plus-PPN:1752969723
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68718803   QR-Code
zum Seitenanfang