| Online-Ressource |
Verfasst von: | Brattoli, Biagio [VerfasserIn]  |
| Büchler, Uta [VerfasserIn]  |
| Dorkenwald, Michael [VerfasserIn]  |
| Reiser, Philipp [VerfasserIn]  |
| Filli, Linard [VerfasserIn]  |
| Helmchen, Fritjof [VerfasserIn]  |
| Wahl, Anna-Sophia [VerfasserIn]  |
| Ommer, Björn [VerfasserIn]  |
Titel: | Unsupervised behaviour analysis and magnification (uBAM) using deep learning |
Verf.angabe: | Biagio Brattoli, Uta Büchler, Michael Dorkenwald, Philipp Reiser, Linard Filli, Fritjof Helmchen, Anna-Sophia Wahl and Björn Ommer |
E-Jahr: | 2021 |
Jahr: | 05 April 2021 |
Umfang: | 12 S. |
Fussnoten: | Gesehen am 20.04.2021 |
Titel Quelle: | Enthalten in: Nature machine intelligence |
Ort Quelle: | [London] : Springer Nature Publishing, 2019 |
Jahr Quelle: | 2021 |
Band/Heft Quelle: | 3(2021), Seite 495-506 |
ISSN Quelle: | 2522-5839 |
Abstract: | Motor behaviour analysis is essential to biomedical research and clinical diagnostics as it provides a non-invasive strategy for identifying motor impairment and its change caused by interventions. State-of-the-art instrumented movement analysis is time- and cost-intensive, because it requires the placement of physical or virtual markers. As well as the effort required for marking the keypoints or annotations necessary for training or fine-tuning a detector, users need to know the interesting behaviour beforehand to provide meaningful keypoints. Here, we introduce unsupervised behaviour analysis and magnification (uBAM), an automatic deep learning algorithm for analysing behaviour by discovering and magnifying deviations. A central aspect is unsupervised learning of posture and behaviour representations to enable an objective comparison of movement. Besides discovering and quantifying deviations in behaviour, we also propose a generative model for visually magnifying subtle behaviour differences directly in a video without requiring a detour via keypoints or annotations. Essential for this magnification of deviations, even across different individuals, is a disentangling of appearance and behaviour. Evaluations on rodents and human patients with neurological diseases demonstrate the wide applicability of our approach. Moreover, combining optogenetic stimulation with our unsupervised behaviour analysis shows its suitability as a non-invasive diagnostic tool correlating function to brain plasticity. |
DOI: | doi:10.1038/s42256-021-00326-x |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext ; Verlag: https://doi.org/10.1038/s42256-021-00326-x |
| Volltext: https://www.nature.com/articles/s42256-021-00326-x |
| DOI: https://doi.org/10.1038/s42256-021-00326-x |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1755430590 |
Verknüpfungen: | → Zeitschrift |
Unsupervised behaviour analysis and magnification (uBAM) using deep learning / Brattoli, Biagio [VerfasserIn]; 05 April 2021 (Online-Ressource)