Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Katzfuß, Matthias [VerfasserIn]  |
Titel: | Bayesian nonstationary spatial modeling for very large datasets |
Verf.angabe: | Matthias Katzfuss |
E-Jahr: | 2013 |
Jahr: | 11 February 2013 |
Umfang: | 12 S. |
Teil: | volume:24 |
| year:2013 |
| number:3 |
| pages:189-200 |
| extent:12 |
Fussnoten: | Gesehen am 22.04.2021 |
Titel Quelle: | Enthalten in: Environmetrics |
Ort Quelle: | Chichester, West Sussex : Wiley, 1991 |
Jahr Quelle: | 2013 |
Band/Heft Quelle: | 24(2013), 3, Seite 189-200 |
ISSN Quelle: | 1099-095X |
Abstract: | With the proliferation of modern high-resolution measuring instruments mounted on satellites, planes, ground-based vehicles, and monitoring stations, a need has arisen for statistical methods suitable for the analysis of large spatial datasets observed on large spatial domains. Statistical analyses of such datasets provide two main challenges: first, traditional spatial-statistical techniques are often unable to handle large numbers of observations in a computationally feasible way; second, for large and heterogeneous spatial domains, it is often not appropriate to assume that a process of interest is stationary over the entire domain. We address the first challenge by using a model combining a low-rank component, which allows for flexible modeling of medium-to-long-range dependence via a set of spatial basis functions, with a tapered remainder component, which allows for modeling of local dependence using a compactly supported covariance function. Addressing the second challenge, we propose two extensions to this model that result in increased flexibility: first, the model is parameterized on the basis of a nonstationary Matérn covariance, where the parameters vary smoothly across space; second, in our fully Bayesian model, all components and parameters are considered random, including the number, locations, and shapes of the basis functions used in the low-rank component. Using simulated data and a real-world dataset of high-resolution soil measurements, we show that both extensions can result in substantial improvements over the current state-of-the-art. Copyright © 2013 John Wiley & Sons, Ltd. |
DOI: | doi:10.1002/env.2200 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext ; Verlag: https://doi.org/https://doi.org/10.1002/env.2200 |
| Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/env.2200 |
| DOI: https://doi.org/10.1002/env.2200 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | covariance tapering |
| full-scale approximation |
| low-rank models |
| massive datasets |
| model selection |
| reversible-jump MCMC |
K10plus-PPN: | 1755736932 |
Verknüpfungen: | → Zeitschrift |
Bayesian nonstationary spatial modeling for very large datasets / Katzfuß, Matthias [VerfasserIn]; 11 February 2013 (Online-Ressource)
68726782