Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Katzfuß, Matthias [VerfasserIn]   i
Titel:Bayesian nonstationary spatial modeling for very large datasets
Verf.angabe:Matthias Katzfuss
E-Jahr:2013
Jahr:11 February 2013
Umfang:12 S.
Teil:volume:24
 year:2013
 number:3
 pages:189-200
 extent:12
Fussnoten:Gesehen am 22.04.2021
Titel Quelle:Enthalten in: Environmetrics
Ort Quelle:Chichester, West Sussex : Wiley, 1991
Jahr Quelle:2013
Band/Heft Quelle:24(2013), 3, Seite 189-200
ISSN Quelle:1099-095X
Abstract:With the proliferation of modern high-resolution measuring instruments mounted on satellites, planes, ground-based vehicles, and monitoring stations, a need has arisen for statistical methods suitable for the analysis of large spatial datasets observed on large spatial domains. Statistical analyses of such datasets provide two main challenges: first, traditional spatial-statistical techniques are often unable to handle large numbers of observations in a computationally feasible way; second, for large and heterogeneous spatial domains, it is often not appropriate to assume that a process of interest is stationary over the entire domain. We address the first challenge by using a model combining a low-rank component, which allows for flexible modeling of medium-to-long-range dependence via a set of spatial basis functions, with a tapered remainder component, which allows for modeling of local dependence using a compactly supported covariance function. Addressing the second challenge, we propose two extensions to this model that result in increased flexibility: first, the model is parameterized on the basis of a nonstationary Matérn covariance, where the parameters vary smoothly across space; second, in our fully Bayesian model, all components and parameters are considered random, including the number, locations, and shapes of the basis functions used in the low-rank component. Using simulated data and a real-world dataset of high-resolution soil measurements, we show that both extensions can result in substantial improvements over the current state-of-the-art. Copyright © 2013 John Wiley & Sons, Ltd.
DOI:doi:10.1002/env.2200
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/https://doi.org/10.1002/env.2200
 Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/env.2200
 DOI: https://doi.org/10.1002/env.2200
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:covariance tapering
 full-scale approximation
 low-rank models
 massive datasets
 model selection
 reversible-jump MCMC
K10plus-PPN:1755736932
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68726782   QR-Code
zum Seitenanfang