Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Klein, Ole [VerfasserIn]   i
Titel:An improved conjugate gradients method for quasi-linear Bayesian inverse problems, tested on an example from hydrogeology
Verf.angabe:Ole Klein
Jahr:2021
Umfang:29 S.
Teil:year:2021
 pages:357-385
 extent:29
Fussnoten:First online: 02 December 2020 ; Gesehen am 29.06.2021
Titel Quelle:Enthalten in: International Conference on High Performance Scientific Computing (7. : 2018 : Hanoi)Modeling, simulation and optimization of complex processes HPSC 2018
Ausgabe Quelle:1st ed. 2021
Ort Quelle:Cham : Springer International Publishing, 2021
Jahr Quelle:2021
Band/Heft Quelle:(2021), Seite 357-385
ISBN Quelle:978-3-030-55240-4
Abstract:We present a framework for high-performance quasi-linear Bayesian inverse modelling and its application in hydrogeology; extensions to other domains of application are straightforward due to generic programming and modular design choices. The central component of the framework is a collection of specialized preconditioned methods for nonlinear least squares: the classical three-term recurrence relation of Conjugate Gradients and related methods is replaced by a specific choice of six-term recurrence relation, which is used to reformulate the resulting optimization problem and eliminate several costly matrix-vector products. We demonstrate that this reformulation leads to improved performance, robustness, and accuracy for a synthetic example application from hydrogeology. The proposed prior-preconditioned caching CG scheme is the only one among the considered CG methods that scales perfectly in the number of estimated parameters. In the highly relevant case of sparse measurements, the proposed method is up to two orders of magnitude faster than the classical CG scheme, and at least six times faster than a prior-preconditioned, non-caching version. It is therefore particularly suited for the large-scale inversion of sparse observations.
DOI:doi:10.1007/978-3-030-55240-4_17
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1007/978-3-030-55240-4_17
 Volltext: https://link.springer.com/chapter/10.1007/978-3-030-55240-4_17
 DOI: https://doi.org/10.1007/978-3-030-55240-4_17
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1761490435
Verknüpfungen:→ Sammelwerk

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68753967   QR-Code
zum Seitenanfang