| Online-Ressource |
Verfasst von: | Reinke, Annika [VerfasserIn]  |
| Tizabi, Minu [VerfasserIn]  |
| Eisenmann, Matthias [VerfasserIn]  |
| Maier-Hein, Lena [VerfasserIn]  |
Titel: | Common pitfalls and recommendations for grand challenges in medical artificial intelligence |
Verf.angabe: | Annika Reinke, Minu D. Tizabi, Matthias Eisenmann, Lena Maier-Hein |
E-Jahr: | 2021 |
Jahr: | 11 June 2021 |
Umfang: | 3 S. |
Fussnoten: | Gesehen am 25.10.2021 |
Titel Quelle: | Enthalten in: European urology focus |
Ort Quelle: | Amsterdam : Elsevier, 2015 |
Jahr Quelle: | 2021 |
Band/Heft Quelle: | 7(2021), 4 vom: Juli, Seite 710-712 |
ISSN Quelle: | 2405-4569 |
Abstract: | With the impact of artificial intelligence (AI) algorithms on medical research on the rise, the importance of competitions for comparative validation of algorithms, so-called challenges, has been steadily increasing, to a point at which challenges can be considered major drivers of research, particularly in the biomedical image analysis domain. Given their importance, high quality, transparency, and interpretability of challenges is essential for good scientific practice and meaningful validation of AI algorithms, for instance towards clinical translation. This mini-review presents several issues related to the design, execution, and interpretation of challenges in the biomedical domain and provides best-practice recommendations. - Patient summary - This paper presents recommendations on how to reliably compare the usefulness of new artificial intelligence methods for analysis of medical images. |
DOI: | doi:10.1016/j.euf.2021.05.008 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: https://doi.org/10.1016/j.euf.2021.05.008 |
| Volltext: https://www.sciencedirect.com/science/article/pii/S2405456921001607 |
| DOI: https://doi.org/10.1016/j.euf.2021.05.008 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Artificial intelligence |
| Biomedical image analysis |
| Good scientific practice |
| Grand challenges |
| Machine learning |
| Validation |
K10plus-PPN: | 1775135705 |
Verknüpfungen: | → Zeitschrift |
Common pitfalls and recommendations for grand challenges in medical artificial intelligence / Reinke, Annika [VerfasserIn]; 11 June 2021 (Online-Ressource)