| Online-Ressource |
Verfasst von: | Klein, Sebastian [VerfasserIn]  |
| Quaas, Alexander [VerfasserIn]  |
| Quantius, Jennifer [VerfasserIn]  |
| Löser, Heike [VerfasserIn]  |
| Meinel, Jörn [VerfasserIn]  |
| Peifer, Martin [VerfasserIn]  |
| Wagner, Steffen [VerfasserIn]  |
| Gattenlöhner, Stefan [VerfasserIn]  |
| Wittekindt, Claus [VerfasserIn]  |
| Knebel Doeberitz, Magnus von [VerfasserIn]  |
| Prigge, Elena-Sophie [VerfasserIn]  |
| Langer, Christine [VerfasserIn]  |
| Noh, Ka-Won [VerfasserIn]  |
| Maltseva, Margaret [VerfasserIn]  |
| Reinhardt, Christian [VerfasserIn]  |
| Büttner, Reinhard [VerfasserIn]  |
| Klußmann, Jens Peter [VerfasserIn]  |
| Würdemann, Nora [VerfasserIn]  |
Titel: | Deep learning predicts HPV association in oropharyngeal squamous cell carcinomas and identifies patients with a favorable prognosis using regular H&E stains |
Verf.angabe: | Sebastian Klein, Alexander Quaas, Jennifer Quantius, Heike Löser, Martin Peifer, Steffen Wagner, Stefan Gattenlöhner, Claus Wittekindt, Magnus von Knebel Doeberitz, Elena-Sophie Prigge, Christine Langer, Ka-Won Noh, Margaret Maltseva, Hans Christian Reinhardt, Reinhard Büttner, Jens Peter Klussmann, Nora Wuerdemann |
E-Jahr: | 2021 |
Jahr: | February 2021 |
Umfang: | 8 S. |
Fussnoten: | Gesehen am 23.11.2021 |
Titel Quelle: | Enthalten in: Clinical cancer research |
Ort Quelle: | Philadelphia, Pa. [u.a.] : AACR, 1995 |
Jahr Quelle: | 2021 |
Band/Heft Quelle: | 27(2021), 4, Seite 1131-1138 |
ISSN Quelle: | 1557-3265 |
Abstract: | Purpose: Human papillomavirus (HPV) in oropharyngeal squamous cell carcinoma (OPSCC) is tumorigenic and has been associated with a favorable prognosis compared with OPSCC caused by tobacco, alcohol, and other carcinogens. Meanwhile, machine learning has evolved as a powerful tool to predict molecular and cellular alterations of medical images of various sources. - Experimental Design: We generated a deep learning-based HPV prediction score (HPV-ps) on regular hematoxylin and eosin (H&E) stains and assessed its performance to predict HPV association using 273 patients from two different sites (OPSCC; Giessen, n = 163; Cologne, n = 110). Then, the prognostic relevance in a total of 594 patients (Giessen, Cologne, HNSCC TCGA) was evaluated. In addition, we investigated whether four board-certified pathologists could identify HPV association (n = 152) and compared the results to the classifier. - Results: Although pathologists were able to diagnose HPV association from H&E-stained slides (AUC = 0.74, median of four observers), the interrater reliability was minimal (Light Kappa = 0.37; P = 0.129), as compared with AUC = 0.8 using the HPV-ps within two independent cohorts (n = 273). The HPV-ps identified individuals with a favorable prognosis in a total of 594 patients from three cohorts (Giessen, OPSCC, HR = 0.55, P < 0.0001; Cologne, OPSCC, HR = 0.44, P = 0.0027; TCGA, non-OPSCC head and neck, HR = 0.69, P = 0.0073). Interestingly, the HPV-ps further stratified patients when combined with p16 status (Giessen, HR = 0.06, P < 0.0001; Cologne, HR = 0.3, P = 0.046). - Conclusions: Detection of HPV association in OPSCC using deep learning with help of regular H&E stains may either be used as a single biomarker, or in combination with p16 status, to identify patients with OPSCC with a favorable prognosis, potentially outperforming combined HPV-DNA/p16 status as a biomarker for patient stratification. |
DOI: | doi:10.1158/1078-0432.CCR-20-3596 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext ; Resolving-System ; Verlag: https://clincancerres.aacrjournals.org/content/27/4/1131 |
| Volltext: https://doi.org/10.1158/1078-0432.CCR-20-3596 |
| DOI: https://doi.org/10.1158/1078-0432.CCR-20-3596 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1778397727 |
Verknüpfungen: | → Zeitschrift |
Deep learning predicts HPV association in oropharyngeal squamous cell carcinomas and identifies patients with a favorable prognosis using regular H&E stains / Klein, Sebastian [VerfasserIn]; February 2021 (Online-Ressource)