Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Verfasst von:Géron, Aurélien [VerfasserIn]   i
Titel:Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition
Institutionen:Safari, an O’Reilly Media Company. [MitwirkendeR]   i
Verf.angabe:Géron, Aurélien
Ausgabe:3rd edition
Verlagsort:[Erscheinungsort nicht ermittelbar]
Verlag:O'Reilly Media, Inc.
Jahr:2022
Umfang:1 online resource (322 pages)
Fussnoten:Online resource; Title from title page (viewed October 25, 2022)
Abstract:Through a recent series of breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This best-selling book uses concrete examples, minimal theory, and production-ready Python frameworks--scikit-learn, Keras, and TensorFlow--to help you gain an intuitive understanding of the concepts and tools for building intelligent systems. With this updated third edition, author Aurelien Geron explores a range of techniques, starting with simple linear regression and progressing to deep neural networks. Numerous code examples and exercises throughout the book help you apply what you've learned. Programming experience is all you need to get started. Use scikit-learn to track an example machine learning project end to end Explore several models, including support vector machines, decision trees, random forests, and ensemble methods Exploit unsupervised learning techniques such as dimensionality reduction, clustering, and anomaly detection Dive into neural net architectures, including convolutional nets, recurrent nets, generative adversarial networks, and transformers Use TensorFlow and Keras to build and train neural nets for computer vision, natural language processing, generative models, and deep reinforcement learning Train neural nets using multiple GPUs and deploy them at scale using Google's Vertex AI
ComputerInfo:Mode of access: World Wide Web.
URL:Aggregator: https://learning.oreilly.com/library/view/-/9781098125967/?ar
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Electronic books
K10plus-PPN:1789077893
 
 
Lokale URL UB: Zum Volltext
 
 Bibliothek der Medizinischen Fakultät Mannheim der Universität Heidelberg
 Klinikum MA Bestellen/Vormerken für Benutzer des Klinikums Mannheim
Eigene Kennung erforderlich
Bibliothek/Idn:UW / m405480232X
Lokale URL Inst.: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68876091   QR-Code
zum Seitenanfang