Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Tikka, Pauli [VerfasserIn]   i
 Mercker, Moritz [VerfasserIn]   i
 Skovorodkin, Ilya [VerfasserIn]   i
 Saarela, Ulla [VerfasserIn]   i
 Vainio, Seppo [VerfasserIn]   i
 Ronkainen, Veli-Pekka [VerfasserIn]   i
 Sluka, James P. [VerfasserIn]   i
 Glazier, James A. [VerfasserIn]   i
 Marciniak-Czochra, Anna [VerfasserIn]   i
 Schaefer, Franz [VerfasserIn]   i
Titel:Computational modelling of nephron progenitor cell movement and aggregation during kidney organogenesis
Verf.angabe:Pauli Tikka, Moritz Mercker, Ilya Skovorodkin, Ulla Saarela, Seppo Vainio, Veli-Pekka Ronkainen, James P. Sluka, James A. Glazier, Anna Marciniak-Czochra, Franz Schaefer
Jahr:2022
Umfang:12 S.
Fussnoten:Available online 7 December 2021, version of Record 28 December 2021 ; Gesehen am 29.07.2022
Titel Quelle:Enthalten in: Mathematical biosciences
Ort Quelle:New York, NY : American Elsevier, 1967
Jahr Quelle:2022
Band/Heft Quelle:344(2022), Artikel-ID 108759, Seite 1-12
ISSN Quelle:1879-3134
Abstract:During early kidney organogenesis, nephron progenitor (NP) cells move from the tip to the corner region of the ureteric bud (UB) branches in order to form the pretubular aggregate, the early structure giving rise to nephron formation. NP cells derive from metanephric mesenchymal cells and physically interact with them during the movement. Chemotaxis and cell-cell adhesion differences are believed to drive the cell patterning during this critical period of organogenesis. However, the effect of these forces to the cell patterns and their respective movements are known in limited details. We applied a Cellular Potts Model to explore how these forces and organizations contribute to directed cell movement and aggregation. Model parameters were estimated based on fitting to experimental data obtained in ex vivo kidney explant and dissociation-reaggregation organoid culture studies. Our simulations indicated that optimal enrichment and aggregation of NP cells in the UB corner niche requires chemoattractant secretion from both the UB epithelial cells and the NP cells themselves, as well as differences in cell-cell adhesion energies. Furthermore, NP cells were observed, both experimentally and by modelling, to move at higher speed in the UB corner as compared to the tip region where they originated. The existence of different cell speed domains along the UB was confirmed using self-organizing map analysis. In summary, we saw faster NP cell movements near aggregation. The applicability of Cellular Potts Model approach to simulate cell movement and patterning was found to be good during for this early nephrogenesis process. Further refinement of the model should allow us to recapitulate the effects of developmental changes of cell phenotypes and molecular crosstalk during further organ development.
DOI:doi:10.1016/j.mbs.2021.108759
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1016/j.mbs.2021.108759
 Volltext: https://www.sciencedirect.com/science/article/pii/S0025556421001589
 DOI: https://doi.org/10.1016/j.mbs.2021.108759
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Cellular potts model
 CompuCell3D
 Early nephrogenesis
 Particle swarm optimization
 Python analysis functions
 Self-organizing maps
K10plus-PPN:1811988458
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68948225   QR-Code
zum Seitenanfang