| Online-Ressource |
Verfasst von: | Tavakoli, Andrej [VerfasserIn]  |
| Hielscher, Thomas [VerfasserIn]  |
| Badura, Patrick [VerfasserIn]  |
| Görtz, Magdalena [VerfasserIn]  |
| Kuder, Tristan Anselm [VerfasserIn]  |
| Gnirs, Regula [VerfasserIn]  |
| Schwab, Constantin [VerfasserIn]  |
| Hohenfellner, Markus [VerfasserIn]  |
| Schlemmer, Heinz-Peter [VerfasserIn]  |
| Bonekamp, David [VerfasserIn]  |
Titel: | Contribution of dynamic contrast-enhanced and diffusion MRI to PI-RADS for detecting clinically significant prostate cancer |
Verf.angabe: | Anoshirwan Andrej Tavakoli, Thomas Hielscher, Patrick Badura, Magdalena Görtz, Tristan Anselm Kuder, Regula Gnirs, Constantin Schwab, Markus Hohenfellner, Heinz-Peter Schlemmer, David Bonekamp |
Jahr: | 2023 |
Umfang: | 14 S. |
Fussnoten: | Online veröffentlicht: Aug 16 2022 ; Gesehen am 15.03.2023 |
Titel Quelle: | Enthalten in: Radiology |
Ort Quelle: | Oak Brook, Ill. : Soc., 1923 |
Jahr Quelle: | 2023 |
Band/Heft Quelle: | 306(2023), 1, Seite 186-199 |
ISSN Quelle: | 1527-1315 |
Abstract: | Background - - Prostate Imaging Reporting and Data System (PI-RADS) version 2.0 requires multiparametric MRI of the prostate, including diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) imaging sequences; however, the contribution of DCE imaging remains unclear. - - Purpose - - To assess whether DCE imaging in addition to apparent diffusion coefficient (ADC) and normalized T2 values improves PI-RADS version 2.0 for prediction of clinically significant prostate cancer (csPCa). - - Materials and Methods - - In this retrospective study, clinically reported PI-RADS lesions in consecutive men who underwent 3-T multiparametric MRI (T2-weighted, DWI, and DCE MRI) from May 2015 to September 2016 were analyzed quantitatively and compared with systematic and targeted MRI-transrectal US fusion biopsy. The normalized T2 signal (nT2), ADC measurement, mean early-phase DCE signal (mDCE), and heuristic DCE parameters were calculated. Logistic regression analysis indicated the most predictive DCE parameters for csPCa (Gleason grade group ≥2). Receiver operating characteristic parameter models were compared using the Obuchowski test. Recursive partitioning analysis determined ADC and mDCE value ranges for combined use with PI-RADS. - - Results - - Overall, 260 men (median age, 64 years [IQR, 58-69 years]) with 432 lesions (csPCa [n = 152] and no csPCa [n = 280]) were included. The mDCE parameter was predictive of csPCa when accounting for the ADC and nT2 parameter in the peripheral zone (odds ratio [OR], 1.76; 95% CI: 1.30, 2.44; P = .001) but not the transition zone (OR, 1.17; 95% CI: 0.81, 1.69; P = .41). Recursive partitioning analysis selected an ADC cutoff of 0.897 × 10−3 mm2/sec (P = .04) as a classifier for peripheral zone lesions with a PI-RADS score assessed on the ADC map (hereafter, ADC PI-RADS) of 3. The mDCE parameter did not differentiate ADC PI-RADS 3 lesions (P = .11), but classified lesions with ADC PI-RADS scores greater than 3 with low ADC values (less than 0.903 × 10−3 mm2/sec, P < .001) into groups with csPCa rates of 70% and 97% (P = .008). A lesion size cutoff of 1.5 cm and qualitative DCE parameters were not defined as classifiers according to recursive partitioning (P > .05). - - Conclusion - - Quantitative or qualitative dynamic contrast-enhanced MRI was not relevant for Prostate Imaging Reporting and Data System (PI-RADS) 3 lesion risk stratification, while quantitative apparent diffusion coefficient (ADC) values were helpful in upgrading PI-RADS 3 and PI-RADS 4 lesions. Quantitative ADC measurement may be more important for risk stratification than current methods in future versions of PI-RADS. - - © RSNA, 2022 - - Online supplemental material is available for this article - - See also the editorial by Goh in this issue. |
DOI: | doi:10.1148/radiol.212692 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: https://doi.org/10.1148/radiol.212692 |
| Volltext: https://pubs.rsna.org/doi/10.1148/radiol.212692 |
| DOI: https://doi.org/10.1148/radiol.212692 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1839249846 |
Verknüpfungen: | → Zeitschrift |
Contribution of dynamic contrast-enhanced and diffusion MRI to PI-RADS for detecting clinically significant prostate cancer / Tavakoli, Andrej [VerfasserIn]; 2023 (Online-Ressource)