Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Álvaro Berbís, Manuel [VerfasserIn]   i
 McClintock, David S. [VerfasserIn]   i
 Bychkov, Andrey [VerfasserIn]   i
 Van der Laak, Jeroen [VerfasserIn]   i
 Pantanowitz, Liron [VerfasserIn]   i
 Lennerz, Jochen K. [VerfasserIn]   i
 Cheng, Jerome Y. [VerfasserIn]   i
 Delahunt, Brett [VerfasserIn]   i
 Egevad, Lars [VerfasserIn]   i
 Eloy, Catarina [VerfasserIn]   i
 Farris, Alton B. [VerfasserIn]   i
 Fraggetta, Filippo [VerfasserIn]   i
 García del Moral, Raimundo [VerfasserIn]   i
 Hartman, Douglas J. [VerfasserIn]   i
 Herrmann, Markus D. [VerfasserIn]   i
 Hollemans, Eva [VerfasserIn]   i
 Iczkowski, Kenneth A. [VerfasserIn]   i
 Karsan, Aly [VerfasserIn]   i
 Kriegsmann, Mark [VerfasserIn]   i
 Salama, Mohamed E. [VerfasserIn]   i
 Sinard, John H. [VerfasserIn]   i
 Tuthill, J. Mark [VerfasserIn]   i
 Williams, Bethany [VerfasserIn]   i
 Casado-Sánchez, César [VerfasserIn]   i
 Sánchez-Turrión, Víctor [VerfasserIn]   i
 Luna, Antonio [VerfasserIn]   i
 Aneiros-Fernández, José [VerfasserIn]   i
 Shen, Jeanne [VerfasserIn]   i
Titel:Computational pathology in 2030
Titelzusatz:a Delphi study forecasting the role of AI in pathology within the next decade
Verf.angabe:M. Alvaro Berbís, David S. McClintock, Andrey Bychkov, Jeroen Van der Laak, Liron Pantanowitz, Jochen K. Lennerz, Jerome Y. Cheng, Brett Delahunt, Lars Egevad, Catarina Eloy, Alton B. Farris, Filippo Fraggetta, Raimundo García del Moral, Douglas J. Hartman, Markus D. Herrmann, Eva Hollemans, Kenneth A. Iczkowski, Aly Karsan, Mark Kriegsmann, Mohamed E. Salama, John H. Sinard, J. Mark Tuthill, Bethany Williams, César Casado-Sánchez, Víctor Sánchez-Turrión, Antonio Luna, José Aneiros-Fernández, and Jeanne Shen
E-Jahr:2023
Jahr:4 January 2023
Umfang:14 S.
Fussnoten:Gesehen am 17.04.2023
Titel Quelle:Enthalten in: EBioMedicine
Ort Quelle:Amsterdam [u.a.] : Elsevier, 2014
Jahr Quelle:2023
Band/Heft Quelle:88(2023) vom: Jan., Artikel-ID 104427, Seite 1-14
ISSN Quelle:2352-3964
Abstract:Background - Artificial intelligence (AI) is rapidly fuelling a fundamental transformation in the practice of pathology. However, clinical integration remains challenging, with no AI algorithms to date in routine adoption within typical anatomic pathology (AP) laboratories. This survey gathered current expert perspectives and expectations regarding the role of AI in AP from those with first-hand computational pathology and AI experience. - Methods - Perspectives were solicited using the Delphi method from 24 subject matter experts between December 2020 and February 2021 regarding the anticipated role of AI in pathology by the year 2030. The study consisted of three consecutive rounds: 1) an open-ended, free response questionnaire generating a list of survey items; 2) a Likert-scale survey scored by experts and analysed for consensus; and 3) a repeat survey of items not reaching consensus to obtain further expert consensus. - Findings - Consensus opinions were reached on 141 of 180 survey items (78.3%). Experts agreed that AI would be routinely and impactfully used within AP laboratory and pathologist clinical workflows by 2030. High consensus was reached on 100 items across nine categories encompassing the impact of AI on (1) pathology key performance indicators (KPIs) and (2) the pathology workforce and specific tasks performed by (3) pathologists and (4) AP lab technicians, as well as (5) specific AI applications and their likelihood of routine use by 2030, (6) AI's role in integrated diagnostics, (7) pathology tasks likely to be fully automated using AI, and (8) regulatory/legal and (9) ethical aspects of AI integration in pathology. - Interpretation - This systematic consensus study details the expected short-to-mid-term impact of AI on pathology practice. These findings provide timely and relevant information regarding future care delivery in pathology and raise key practical, ethical, and legal challenges that must be addressed prior to AI's successful clinical implementation. - Funding - No specific funding was provided for this study.
DOI:doi:10.1016/j.ebiom.2022.104427
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.ebiom.2022.104427
 Volltext: https://www.sciencedirect.com/science/article/pii/S2352396422006090
 DOI: https://doi.org/10.1016/j.ebiom.2022.104427
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Anatomic pathology
 Artificial intelligence
 Computational pathology
 Digital pathology
 Machine learning
 Pathologist workflow
K10plus-PPN:1842851802
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69065975   QR-Code
zum Seitenanfang