Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Hassan, Umair [VerfasserIn]   i
 Feld, Gordon Benedikt [VerfasserIn]   i
 Bergmann, Til Ole [VerfasserIn]   i
Titel:Automated real-time EEG sleep spindle detection for brain-state-dependent brain stimulation
Titelzusatz:research article
Verf.angabe:Umair Hassan, Gordon B. Feld, Til Ole Bergmann
E-Jahr:2022
Jahr:21 September 2022
Umfang:12 S.
Fussnoten:Gesehen am 12.06.2023
Titel Quelle:Enthalten in: Journal of sleep research
Ort Quelle:Oxford [u.a.] : Wiley-Blackwell, 1992
Jahr Quelle:2022
Band/Heft Quelle:31(2022), 6 vom: Dez., Artikel-ID e13733, Seite 1-12
ISSN Quelle:1365-2869
Abstract:Sleep spindles are a hallmark electroencephalographic feature of non-rapid eye movement sleep, and are believed to be instrumental for sleep-dependent memory reactivation and consolidation. However, direct proof of their causal relevance is hard to obtain, and our understanding of their immediate neurophysiological consequences is limited. To investigate their causal role, spindles need to be targeted in real-time with sensory or non-invasive brain-stimulation techniques. While fully automated offline detection algorithms are well established, spindle detection in real-time is highly challenging due to their spontaneous and transient nature. Here, we present the real-time spindle detector, a robust multi-channel electroencephalographic signal-processing algorithm that enables the automated triggering of stimulation during sleep spindles in a phase-specific manner. We validated the real-time spindle detection method by streaming pre-recorded sleep electroencephalographic datasets to a real-time computer system running a Simulink® Real-Time™ implementation of the algorithm. Sleep spindles were detected with high levels of Sensitivity ( 83%), Precision ( 78%) and a convincing F1-Score ( 81%) in reference to state-of-the-art offline algorithms (which reached similar or lower levels when compared with each other), for both naps and full nights, and largely independent of sleep scoring information. Detected spindles were comparable in frequency, duration, amplitude and symmetry, and showed the typical time-frequency characteristics as well as a centroparietal topography. Spindles were detected close to their centre and reliably at the predefined target phase. The real-time spindle detection algorithm therefore empowers researchers to target spindles during human sleep, and apply the stimulation method and experimental paradigm of their choice.
DOI:doi:10.1111/jsr.13733
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1111/jsr.13733
 kostenfrei: Volltext: http://onlinelibrary.wiley.com/doi/abs/10.1111/jsr.13733
 DOI: https://doi.org/10.1111/jsr.13733
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:closed loop
 electroencephalographic triggered stimulation
 non-invasive brain stimulation
 spindle cycle detection
 spindle phase triggered
 transcranial magnetic stimulation
K10plus-PPN:1848798369
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69084443   QR-Code
zum Seitenanfang