Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Bello-García, Antonio [VerfasserIn]   i
 Passegger, V. M. [VerfasserIn]   i
 Ordieres-Meré, J. [VerfasserIn]   i
 Schweitzer, A. [VerfasserIn]   i
 Caballero, J. A. [VerfasserIn]   i
 González-Marcos, A. [VerfasserIn]   i
 Ribas, I. [VerfasserIn]   i
 Reiners, A. [VerfasserIn]   i
 Quirrenbach, Andreas [VerfasserIn]   i
 Amado, P. J. [VerfasserIn]   i
 Béjar, V. J. S. [VerfasserIn]   i
 Cifuentes, C. [VerfasserIn]   i
 Henning, Thomas [VerfasserIn]   i
 Kaminski, Adrian [VerfasserIn]   i
 Luque, R. [VerfasserIn]   i
 Montes, D. [VerfasserIn]   i
 Morales, J. C. [VerfasserIn]   i
 Pedraz, S. [VerfasserIn]   i
 Tabernero, H. M. [VerfasserIn]   i
 Zechmeister, M. [VerfasserIn]   i
Titel:The CARMENES search for exoplanets around M dwarfs - a deep transfer learning method to determine Teff and [M/H] of target stars
Verf.angabe:A. Bello-García, V.M. Passegger, J. Ordieres-Meré, A. Schweitzer, J.A. Caballero, A. González-Marcos, I. Ribas, A. Reiners, A. Quirrenbach, P.J. Amado, V.J.S. Béjar, C. Cifuentes, Th Henning, A. Kaminski, R. Luque, D. Montes, J.C. Morales, S. Pedraz, H.M. Tabernero, and M. Zechmeister
E-Jahr:2023
Jahr:16 May 2023
Umfang:15 S.
Fussnoten:Gesehen am 17.07.2023
Titel Quelle:Enthalten in: Astronomy and astrophysics
Ort Quelle:Les Ulis : EDP Sciences, 1969
Jahr Quelle:2023
Band/Heft Quelle:673(2023) vom: Mai, Artikel-ID A105, Seite 1-15
ISSN Quelle:1432-0746
Abstract:The large amounts of astrophysical data being provided by existing and future instrumentation require efficient and fast analysis tools. Transfer learning is a new technique promising higher accuracy in the derived data products, with information from one domain being transferred to improve the accuracy of a neural network model in another domain. In this work, we demonstrate the feasibility of applying the deep transfer learning (DTL) approach to high-resolution spectra in the framework of photospheric stellar parameter determination. To this end, we used 14 stars of the CARMENES survey sample with interferometric angular diameters to calculate the effective temperature, as well as six M dwarfs that are common proper motion companions to FGK-type primaries with known metallicity. After training a deep learning (DL) neural network model on synthetic PHOENIX-ACES spectra, we used the internal feature representations together with those 14+6 stars with independent parameter measurements as a new input for the transfer process. We compare the derived stellar parameters of a small sample of M dwarfs kept out of the training phase with results from other methods in the literature. Assuming that temperatures from bolometric luminosities and interferometric radii and metallicities from FGK+M binaries are sufficiently accurate, DTL provides a higher accuracy than our previous state-of-the-art DL method (mean absolute differences improve by 20 K for temperature and 0.2 dex for metallicity from DL to DTL when compared with reference values from interferometry and FGK+M binaries). Furthermore, the machine learning (internal) precision of DTL also improves as uncertainties are five times smaller on average. These results indicate that DTL is a robust tool for obtaining M-dwarf stellar parameters comparable to those obtained from independent estimations for well-known stars.
DOI:doi:10.1051/0004-6361/202243934
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1051/0004-6361/202243934
 kostenfrei: Volltext: https://www.aanda.org/articles/aa/abs/2023/05/aa43934-22/aa43934-22.html
 DOI: https://doi.org/10.1051/0004-6361/202243934
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1852781270
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69098395   QR-Code
zum Seitenanfang