| Online-Ressource |
Verfasst von: | Zhou, Wen [VerfasserIn]  |
| Dong, Bowei [VerfasserIn]  |
| Farmakidis, Nikolaos [VerfasserIn]  |
| Li, Xuan [VerfasserIn]  |
| Youngblood, Nathan [VerfasserIn]  |
| Huang, Kairan [VerfasserIn]  |
| He, Yuhan [VerfasserIn]  |
| Wright, C. David [VerfasserIn]  |
| Pernice, Wolfram [VerfasserIn]  |
| Bhaskaran, Harish [VerfasserIn]  |
Titel: | In-memory photonic dot-product engine with electrically programmable weight banks |
Verf.angabe: | Wen Zhou, Bowei Dong, Nikolaos Farmakidis, Xuan Li, Nathan Youngblood, Kairan Huang, Yuhan He, C. David Wright, Wolfram H.P. Pernice, Harish Bhaskaran |
E-Jahr: | 2023 |
Jahr: | 20 May 2023 |
Umfang: | 10 S. |
Fussnoten: | Gesehen am 02.08.2023 |
Titel Quelle: | Enthalten in: Nature Communications |
Ort Quelle: | [London] : Nature Publishing Group UK, 2010 |
Jahr Quelle: | 2023 |
Band/Heft Quelle: | 14(2023), Artikel-ID 2887, Seite 1-10 |
ISSN Quelle: | 2041-1723 |
Abstract: | Electronically reprogrammable photonic circuits based on phase-change chalcogenides present an avenue to resolve the von-Neumann bottleneck; however, implementation of such hybrid photonic-electronic processing has not achieved computational success. Here, we achieve this milestone by demonstrating an in-memory photonic-electronic dot-product engine, one that decouples electronic programming of phase-change materials (PCMs) and photonic computation. Specifically, we develop non-volatile electronically reprogrammable PCM memory cells with a record-high 4-bit weight encoding, the lowest energy consumption per unit modulation depth (1.7 nJ/dB) for Erase operation (crystallization), and a high switching contrast (158.5%) using non-resonant silicon-on-insulator waveguide microheater devices. This enables us to perform parallel multiplications for image processing with a superior contrast-to-noise ratio (≥87.36) that leads to an enhanced computing accuracy (standard deviation σ ≤ 0.007). An in-memory hybrid computing system is developed in hardware for convolutional processing for recognizing images from the MNIST database with inferencing accuracies of 86% and 87%. |
DOI: | doi:10.1038/s41467-023-38473-x |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: https://doi.org/10.1038/s41467-023-38473-x |
| Volltext: https://www.nature.com/articles/s41467-023-38473-x |
| DOI: https://doi.org/10.1038/s41467-023-38473-x |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Optical materials and structures |
| Optoelectronic devices and components |
K10plus-PPN: | 1854152467 |
Verknüpfungen: | → Zeitschrift |
In-memory photonic dot-product engine with electrically programmable weight banks / Zhou, Wen [VerfasserIn]; 20 May 2023 (Online-Ressource)