Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Schell, Marianne [VerfasserIn]   i
 Foltyn-Dumitru, Martha [VerfasserIn]   i
 Bendszus, Martin [VerfasserIn]   i
 Vollmuth, Philipp [VerfasserIn]   i
Titel:Automated hippocampal segmentation algorithms evaluated in stroke patients
Verf.angabe:Marianne Schell, Martha Foltyn-Dumitru, Martin Bendszus & Philipp Vollmuth
E-Jahr:2023
Jahr:20 July 2023
Umfang:12 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 12.09.2023
Titel Quelle:Enthalten in: Scientific reports
Ort Quelle:[London] : Macmillan Publishers Limited, part of Springer Nature, 2011
Jahr Quelle:2023
Band/Heft Quelle:13(2023), Artikel-ID 11712, Seite 1-12
ISSN Quelle:2045-2322
Abstract:Deep learning segmentation algorithms can produce reproducible results in a matter of seconds. However, their application to more complex datasets is uncertain and may fail in the presence of severe structural abnormalities-such as those commonly seen in stroke patients. In this investigation, six recent, deep learning-based hippocampal segmentation algorithms were tested on 641 stroke patients of a multicentric, open-source dataset ATLAS 2.0. The comparisons of the volumes showed that the methods are not interchangeable with concordance correlation coefficients from 0.266 to 0.816. While the segmentation algorithms demonstrated an overall good performance (volumetric similarity [VS] 0.816 to 0.972, DICE score 0.786 to 0.921, and Hausdorff distance [HD] 2.69 to 6.34), no single out-performing algorithm was identified: FastSurfer performed best in VS, QuickNat in DICE and average HD, and Hippodeep in HD. Segmentation performance was significantly lower for ipsilesional segmentation, with a decrease in performance as a function of lesion size due to the pathology-based domain shift. Only QuickNat showed a more robust performance in volumetric similarity. Even though there are many pre-trained segmentation methods, it is important to be aware of the possible decrease in performance for the segmentation results on the lesion side due to the pathology-based domain shift. The segmentation algorithm should be selected based on the research question and the evaluation parameter needed. More research is needed to improve current hippocampal segmentation methods.
DOI:doi:10.1038/s41598-023-38833-z
URL:kostenfrei: Volltext: https://doi.org/10.1038/s41598-023-38833-z
 kostenfrei: Volltext: https://www.nature.com/articles/s41598-023-38833-z
 DOI: https://doi.org/10.1038/s41598-023-38833-z
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:algorithms
 awareness
 hippocampus
 humans
 image processing, computer-assisted
 magnetic resonance imaging
 stroke
K10plus-PPN:1859310559
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69121186   QR-Code
zum Seitenanfang