Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Bunz, Elsa K. [VerfasserIn]   i
 Häufle, Daniel F. B. [VerfasserIn]   i
 Remy, David [VerfasserIn]   i
 Schmitt, Syn [VerfasserIn]   i
Titel:Bioinspired preactivation reflex increases robustness of walking on rough terrain
Verf.angabe:Elsa K. Bunz, Daniel F.B. Haeufle, C. David Remy & Syn Schmitt
E-Jahr:2023
Jahr:14 August 2023
Umfang:10 S.
Fussnoten:Gesehen am 04.10.2023
Titel Quelle:Enthalten in: Scientific reports
Ort Quelle:[London] : Springer Nature, 2011
Jahr Quelle:2023
Band/Heft Quelle:13(2023), Artikel-ID 13219, Seite 1-10
ISSN Quelle:2045-2322
Abstract:Walking on unknown and rough terrain is challenging for (bipedal) robots, while humans naturally cope with perturbations. Therefore, human strategies serve as an excellent inspiration to improve the robustness of robotic systems. Neuromusculoskeletal (NMS) models provide the necessary interface for the validation and transfer of human control strategies. Reflexes play a crucial part during normal locomotion and especially in the face of perturbations, and provide a simple, transferable, and bio-inspired control scheme. Current reflex-based NMS models are not robust to unexpected perturbations. Therefore, in this work, we propose a bio-inspired improvement of a widely used NMS walking model. In humans, different muscles show an increase in activation in anticipation of the landing at the end of the swing phase. This preactivation is not integrated in the used reflex-based walking model. We integrate this activation by adding an additional feedback loop and show that the landing is adapted and the robustness to unexpected step-down perturbations is markedly improved (from 3 to 10 cm). Scrutinizing the effect, we find that the stabilizing effect is caused by changed knee kinematics. Preactivation, therefore, acts as an accommodation strategy to cope with unexpected step-down perturbations, not requiring any detection of the perturbation. Our results indicate that such preactivation can potentially enable a bipedal system to react adequately to upcoming unexpected perturbations and is hence an effective adaptation of reflexes to cope with rough terrain. Preactivation can be ported to robots by leveraging the reflex-control scheme and improves the robustness to step-down perturbation without the need to detect the perturbation. Alternatively, the stabilizing mechanism can also be added in an anticipatory fashion by applying an additional knee torque to the contralateral knee.
DOI:doi:10.1038/s41598-023-39364-3
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1038/s41598-023-39364-3
 kostenfrei: Volltext: https://www.nature.com/articles/s41598-023-39364-3
 DOI: https://doi.org/10.1038/s41598-023-39364-3
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Biomedical engineering
 Biophysical models
 Computational biophysics
 Reflexes
 Spinal cord
K10plus-PPN:1860656935
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69126301   QR-Code
zum Seitenanfang