Navigation überspringen
Universitätsbibliothek Heidelberg
Status: bestellen
> Bestellen/Vormerken
Signatur: LN-U 10-19935::(3)   QR-Code
Standort: Zweigstelle Neuenheim / Lehrbuchsammlung  3D-Plan
Exemplare: siehe unten

+ Andere Auflagen/Ausgaben
Verfasst von:Vasilev, Ivan [VerfasserIn]   i
Titel:Python Deep Learning
Titelzusatz:understand how deep neural networks work and apply them to real-world tasks
Verf.angabe:Ivan Vasilev
Ausgabe:Third edition
Verlagsort:Birmingham ; Mumbai
Verlag:Packt
E-Jahr:2023
Jahr:[November 2023]
Umfang:xv, 345 Seiten
Illustrationen:Illustrationen, Diagramme
ISBN:978-1-83763-850-5
Abstract:Master effective navigation of neural networks, including convolutions and transformers, to tackle computer vision and NLP tasks using PythonKey FeaturesUnderstand the theory, mathematical foundations and the structure of deep neural networksBecome familiar with transformers, large language models, and convolutional networksLearn how to apply them on various computer vision and natural language processing problems Purchase of the print or Kindle book includes a free PDF eBookBook DescriptionThe field of deep learning has developed rapidly in the past years and today covers broad range of applications. This makes it challenging to navigate and hard to understand without solid foundations. This book will guide you from the basics of neural networks to the state-of-the-art large language models in use today.The first part of the book introduces the main machine learning concepts and paradigms. It covers the mathematical foundations, the structure, and the training algorithms of neural networks and dives into the essence of deep learning.The second part of the book introduces convolutional networks for computer vision. We ll learn how to solve image classification, object detection, instance segmentation, and image generation tasks. The third part focuses on the attention mechanism and transformers - the core network architecture of large language models. We ll discuss new types of advanced tasks, they can solve, such as chat bots and text-to-image generation.By the end of this book, you ll have a thorough understanding of the inner workings of deep neural networks. You'll have the ability to develop new models or adapt existing ones to solve your tasks. You ll also have sufficient understanding to continue your research and stay up to date with the latest advancements in the field.What you will learnEstablish theoretical foundations of deep neural networksUnderstand convolutional networks and apply them in computer vision applicationsBecome well versed with natural language processing and recurrent networksExplore the attention mechanism and transformersApply transformers and large language models for natural language and computer visionImplement coding examples with PyTorch, Keras, and Hugging Face TransformersUse MLOps to develop and deploy neural network modelsWho this book is forThis book is for software developers/engineers, students, data scientists, data analysts, machine learning engineers, statisticians, and anyone interested in deep learning. Prior experience with Python programming is a prerequisite
URL:Cover: https://www.dietmardreier.de/annot/426F6F6B446174617C7C393738313833373633383530357C7C434F50.jpg?sq=3
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Online-Ausgabe: Vasilev, Ivan: Python Deep Learning. - 3rd edition.. - Birmingham : Packt Publishing, 2023. - 1 online resource
Sach-SW:COM094000
 COMPUTERS / Programming Languages / General
 Machine learning
 Maschinelles Lernen
 Programmier- und Skriptsprachen, allgemein
 Programming & scripting languages: general
K10plus-PPN:1871888883
Exemplare:

SignaturQRStandortStatus
LN-U 10-19935::(3)QR-CodeZweigstelle Neuenheim / Lehrbuchsammlung3D-Planbestellbar
Mediennummer: 20221664

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69164701   QR-Code
zum Seitenanfang