| Online-Ressource |
Verfasst von: | Schaufelberger, Matthias [VerfasserIn]  |
| Kaiser, Christian [VerfasserIn]  |
| Kühle, Reinald [VerfasserIn]  |
| Wachter, Andreas [VerfasserIn]  |
| Bouffleur, Frederic [VerfasserIn]  |
| Hagen, Niclas [VerfasserIn]  |
| Ringwald, Friedemann [VerfasserIn]  |
| Eisenmann, Urs [VerfasserIn]  |
| Hoffmann, Jürgen [VerfasserIn]  |
| Engel, Michael [VerfasserIn]  |
| Freudlsperger, Christian [VerfasserIn]  |
| Nahm, Werner [VerfasserIn]  |
Titel: | 3D-2D distance maps conversion enhances classification of craniosynostosis |
Verf.angabe: | Matthias Schaufelberger, Christian Kaiser, Reinald Kühle, Andreas Wachter, Frederic Weichel, Niclas Hagen, Friedemann Ringwald, Urs Eisenmann, Jürgen Hoffmann, Michael Engel, Christian Freudlsperger, and Werner Nahm |
E-Jahr: | 2023 |
Jahr: | November 2023 |
Umfang: | 10 S. |
Illustrationen: | Illustrationen |
Fussnoten: | Gesehen am 06.02.2024 |
Titel Quelle: | Enthalten in: Institute of Electrical and Electronics EngineersIEEE transactions on biomedical engineering |
Ort Quelle: | New York, NY : IEEE, 1964 |
Jahr Quelle: | 2023 |
Band/Heft Quelle: | 70(2023), 11 vom: Nov., Seite 3156-3165 |
ISSN Quelle: | 1558-2531 |
Abstract: | Objective: Diagnosis of craniosynostosis using photogrammetric 3D surface scans is a promising radiation-free alternative to traditional computed tomography. We propose a 3D surface scan to 2D distance map conversion enabling the usage of the first convolutional neural networks (CNNs)-based classification of craniosynostosis. Benefits of using 2D images include preserving patient anonymity, enabling data augmentation during training, and a strong under-sampling of the 3D surface with good classification performance. Methods: The proposed distance maps sample 2D images from 3D surface scans using a coordinate transformation, ray casting, and distance extraction. We introduce a CNN-based classification pipeline and compare our classifier to alternative approaches on a dataset of 496 patients. We investigate into low-resolution sampling, data augmentation, and attribution mapping. Results: Resnet18 outperformed alternative classifiers on our dataset with an F1-score of 0.964 and an accuracy of 98.4%. Data augmentation on 2D distance maps increased performance for all classifiers. Under-sampling allowed 256-fold computation reduction during ray casting while retaining an F1-score of 0.92. Attribution maps showed high amplitudes on the frontal head. Conclusion: We demonstrated a versatile mapping approach to extract a 2D distance map from the 3D head geometry increasing classification performance, enabling data augmentation during training on 2D distance maps, and the usage of CNNs. We found that low-resolution images were sufficient for a good classification performance. Significance: Photogrammetric surface scans are a suitable craniosynostosis diagnosis tool for clinical practice. Domain transfer to computed tomography seems likely and can further contribute to reducing ionizing radiation exposure for infants. |
DOI: | doi:10.1109/TBME.2023.3278030 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
kostenfrei: Volltext: https://doi.org/10.1109/TBME.2023.3278030 |
| kostenfrei: Volltext: https://ieeexplore.ieee.org/document/10129889/authors#authors |
| DOI: https://doi.org/10.1109/TBME.2023.3278030 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | 2D conversion |
| classification |
| CNN |
| convolutional neural network |
| craniosynostosis |
| data augmentation |
| distance map |
| Head |
| Magnetic heads |
| Pediatrics |
| photogrammetric surface scans |
| resolution |
| Shape |
| Surgery |
| Three-dimensional displays |
| Training |
K10plus-PPN: | 1880051370 |
Verknüpfungen: | → Zeitschrift |
3D-2D distance maps conversion enhances classification of craniosynostosis / Schaufelberger, Matthias [VerfasserIn]; November 2023 (Online-Ressource)