Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Said, Sarah [VerfasserIn]   i
 Yang, Zeyu [VerfasserIn]   i
 Clauser, P. [VerfasserIn]   i
 Ruiter, N. V. [VerfasserIn]   i
 Baltzer, P. A. T. [VerfasserIn]   i
 Hopp, T. [VerfasserIn]   i
Titel:Estimation of the biomechanical mammographic deformation of the breast using machine learning models 1
Verf.angabe:S. Said, Z. Yang, P. Clauser, N.V. Ruiter, P.A.T. Baltzer, T. Hopp
E-Jahr:2023
Jahr:December 2023
Umfang:16 S.
Illustrationen:Illustrationen
Fussnoten:Online verfügbar: 6. Oktober 2023, Artikelversion: 10. Oktober 2023 ; Gesehen am 16.04.2024
Titel Quelle:Enthalten in: Clinical biomechanics
Ort Quelle:Amsterdam [u.a.] : Elsevier Science, 1986
Jahr Quelle:2023
Band/Heft Quelle:110(2023), Seite 1-16
ISSN Quelle:1879-1271
Abstract:Background - A typical problem in the registration of MRI and X-ray mammography is the nonlinear deformation applied to the breast during mammography. We have developed a method for virtual deformation of the breast using a biomechanical model automatically constructed from MRI. The virtual deformation is applied in two steps: unloaded state estimation and compression simulation. The finite element method is used to solve the deformation process. However, the extensive computational cost prevents its usage in clinical routine. - Methods - We propose three machine learning models to overcome this problem: an extremely randomized tree (first model), extreme gradient boosting (second model), and deep learning-based bidirectional long short-term memory with an attention layer (third model) to predict the deformation of a biomechanical model. We evaluated our methods with 516 breasts with realistic compression ratios up to 76%. - Findings - We first applied one-fold validation, in which the second and third models performed better than the first model. We then applied ten-fold validation. For the unloaded state estimation, the median RMSE for the second and third models is 0.8 mm and 1.2 mm, respectively. For the compression, the median RMSE is 3.4 mm for both models. We evaluated correlations between model accuracy and characteristics of the clinical datasets such as compression ratio, breast volume, and tissue types. - Interpretation - Using the proposed models, we achieved accurate results comparable to the finite element model, with a speedup of factor 240 using the extreme gradient boosting model. These proposed models can replace the finite element model simulation, enabling clinically relevant real-time application.
DOI:doi:10.1016/j.clinbiomech.2023.106117
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.clinbiomech.2023.106117
 Volltext: https://www.sciencedirect.com/science/article/pii/S0268003323002486
 DOI: https://doi.org/10.1016/j.clinbiomech.2023.106117
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Biomechanical simulation
 Breast imaging
 Clinical datasets
 Finite element methods
 Machine learning
 Mammographic compression
K10plus-PPN:1885962576
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69204835   QR-Code
zum Seitenanfang