Navigation überspringen
Universitätsbibliothek Heidelberg
Status: bestellen
> Bestellen/Vormerken
Signatur: LN-U 10-20013   QR-Code
Standort: Zweigstelle Neuenheim / Lehrbuchsammlung  3D-Plan
Exemplare: siehe unten
Titel:Digital watermarking for machine learning model
Titelzusatz:techniques, protocols and applications
Mitwirkende:Fan, Lixin [HerausgeberIn]   i
 Chan, Chee Seng [HerausgeberIn]   i
 Yang, Qiang [HerausgeberIn]   i
Verf.angabe:Lixin Fan, Chee Seng Chan, Qiang Yang, editors
Verlagsort:Singapore
Verlag:Springer
E-Jahr:2023
Jahr:[2023]
Umfang:xvi, 225 Seiten
Illustrationen:Illustrationen, Diagramme
ISBN:978-981-19-7556-1
Abstract:Machine learning (ML) models, especially large pretrained deep learning (DL) models, are of high economic value and must be properly protected with regard to intellectual property rights (IPR). Model watermarking methods are proposed to embed watermarks into the target model, so that, in the event it is stolen, the models owner can extract the pre-defined watermarks to assert ownership. Model watermarking methods adopt frequently used techniques like backdoor training, multi-task learning, decision boundary analysis etc. to generate secret conditions that constitute model watermarks or fingerprints only known to model owners. These methods have little or no effect on model performance, which makes them applicable to a wide variety of contexts. In terms of robustness, embedded watermarks must be robustly detectable against varying adversarial attacks that attempt to remove the watermarks. The efficacy of model watermarking methods is showcased in diverse applications including image classification, image generation, image captions, natural language processing and reinforcement learning. This book covers the motivations, fundamentals, techniques and protocols for protecting ML models using watermarking. Furthermore, it showcases cutting-edge work in e.g. model watermarking, signature and passport embedding and their use cases in distributed federated learning settings
URL:Cover: https://www.dietmardreier.de/annot/564C42696D677C7C393738393831313937353536317C7C434F50.jpg?sq=1
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Online-Ausgabe: Digital Watermarking for Machine Learning Model. - 1st ed. 2023.. - Singapore : Springer Nature Singapore, 2023. - 1 Online-Ressource(XVI, 225 p. 1 illus.)
Sach-SW:Bildverarbeitung
 COMPUTERS / Artificial Intelligence
 COMPUTERS / Computer Graphics / Image Processing (see also PHOTOGRAPHY / Techniques / Digital)
 COMPUTERS / Computer Vision & Pattern Recognition
 COMPUTERS / Security / General
 Computer security
 Computersicherheit
 Electronics engineering
 Elektronik
 Image processing
 MATHEMATICS / Probability & Statistics / General
 Machine learning
 Maschinelles Lernen
 Network security
 Netzwerksicherheit
K10plus-PPN:1890532606
Exemplare:

SignaturQRStandortStatus
LN-U 10-20013QR-CodeZweigstelle Neuenheim / Lehrbuchsammlung3D-Planbestellbar
Mediennummer: 20223679

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69240635   QR-Code
zum Seitenanfang