Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Valous, Nektarios A. [VerfasserIn]   i
 Popp, Ferdinand [VerfasserIn]   i
 Zörnig, Inka [VerfasserIn]   i
 Jäger, Dirk [VerfasserIn]   i
 Charoentong, Pornpimol [VerfasserIn]   i
Titel:Graph machine learning for integrated multi-omics analysis
Verf.angabe:Nektarios A. Valous, Ferdinand Popp, Inka Zörnig, Dirk Jäger, Pornpimol Charoentong
E-Jahr:2024
Jahr:10 May 2024
Umfang:7 S.
Fussnoten:Gesehen am 30.09.2024
Titel Quelle:Enthalten in: British journal of cancer
Ort Quelle:Edinburgh : Nature Publ. Group, 1999
Jahr Quelle:2024
Band/Heft Quelle:131(2024), 2, Seite 205-211
ISSN Quelle:1532-1827
Abstract:Multi-omics experiments at bulk or single-cell resolution facilitate the discovery of hypothesis-generating biomarkers for predicting response to therapy, as well as aid in uncovering mechanistic insights into cellular and microenvironmental processes. Many methods for data integration have been developed for the identification of key elements that explain or predict disease risk or other biological outcomes. The heterogeneous graph representation of multi-omics data provides an advantage for discerning patterns suitable for predictive/exploratory analysis, thus permitting the modeling of complex relationships. Graph-based approaches—including graph neural networks—potentially offer a reliable methodological toolset that can provide a tangible alternative to scientists and clinicians that seek ideas and implementation strategies in the integrated analysis of their omics sets for biomedical research. Graph-based workflows continue to push the limits of the technological envelope, and this perspective provides a focused literature review of research articles in which graph machine learning is utilized for integrated multi-omics data analyses, with several examples that demonstrate the effectiveness of graph-based approaches.
DOI:doi:10.1038/s41416-024-02706-7
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1038/s41416-024-02706-7
 Volltext: https://www.nature.com/articles/s41416-024-02706-7
 DOI: https://doi.org/10.1038/s41416-024-02706-7
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1903777984
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69257384   QR-Code
zum Seitenanfang