Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Verfasst von:Larose, Chantal D. [VerfasserIn]   i
 Larose, Daniel T. [VerfasserIn]   i
Titel:Data science using Python and R
Verf.angabe:Chantal D. Larose, Daniel T. Larose
Verlagsort:Hoboken, NJ
Verlag:John Wiley & Sons, Inc
Jahr:2019
Umfang:1 online resource (xvii, 238 pages)
Fussnoten:Includes bibliographical references and index. - Online resource; title from digital title page (viewed on April 03, 2019)
ISBN:978-1-119-52684-1
 1-119-52684-1
 978-1-119-52683-4
 1-119-52683-3
 978-1-119-52686-5
 1-119-52686-8
 978-1-119-52681-0
Abstract:Learn data science by doing data science! Data Science Using Python and R will get you plugged into the world's two most widespread open-source platforms for data science: Python and R. Data science is hot. Bloomberg called data scientist "the hottest job in America." Python and R are the top two open-source data science tools in the world. In Data Science Using Python and R, you will learn step-by-step how to produce hands-on solutions to real-world business problems, using state-of-the-art techniques. Data Science Using Python and R is written for the general reader with no previous analytics or programming experience. An entire chapter is dedicated to learning the basics of Python and R. Then, each chapter presents step-by-step instructions and walkthroughs for solving data science problems using Python and R. Those with analytics experience will appreciate having a one-stop shop for learning how to do data science using Python and R. Topics covered include data preparation, exploratory data analysis, preparing to model the data, decision trees, model evaluation, misclassification costs, naIve Bayes classification, neural networks, clustering, regression modeling, dimension reduction, and association rules mining. Further, exciting new topics such as random forests and general linear models are also included. The book emphasizes data-driven error costs to enhance profitability, which avoids the common pitfalls that may cost a company millions of dollars. Data Science Using Python and R provides exercises at the end of every chapter, totaling over 500 exercises in the book. Readers will therefore have plenty of opportunity to test their newfound data science skills and expertise. In the Hands-on Analysis exercises, readers are challenged to solve interesting business problems using real-world data sets.
URL:Aggregator: https://learning.oreilly.com/library/view/-/9781119526810/?ar
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Druck-Ausgabe
Sach-SW:Exploration de données (Informatique)
 Python (Langage de programmation)
 R (Langage de programmation)
 Données volumineuses
 Structures de données (Informatique)
 COMPUTERS ; General
 Big data
 Data mining
 Data structures (Computer science)
 Python (Computer program language)
 R (Computer program language)
K10plus-PPN:1903895278
 
 
Lokale URL UB: Zum Volltext
 
 Bibliothek der Medizinischen Fakultät Mannheim der Universität Heidelberg
 Klinikum MA Bestellen/Vormerken für Benutzer des Klinikums Mannheim
Eigene Kennung erforderlich
Bibliothek/Idn:UW / m4585419322
Lokale URL Inst.: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69258503   QR-Code
zum Seitenanfang