Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Zhang, Tengda [VerfasserIn]   i
 Stengl, Christina [VerfasserIn]   i
 Derksen, Larissa [VerfasserIn]   i
 Palskis, Kristaps [VerfasserIn]   i
 Koritsidis, Konstantinos [VerfasserIn]   i
 Zink, Klemens [VerfasserIn]   i
 Adeberg, Sebastian [VerfasserIn]   i
 Major, Gerald [VerfasserIn]   i
 Weishaar, David [VerfasserIn]   i
 Theiß, Ulrike [VerfasserIn]   i
 Jin, Jing [VerfasserIn]   i
 Spadea, Maria Francesca [VerfasserIn]   i
 Theodoridou, Elpida [VerfasserIn]   i
 Hesser, Jürgen [VerfasserIn]   i
 Baumann, Kilian-Simon [VerfasserIn]   i
 Seco, Joao [VerfasserIn]   i
Titel:Analysis of hydrogen peroxide production in pure water
Titelzusatz:ultrahigh versus conventional dose-rate irradiation and mechanistic insights
Verf.angabe:Tengda Zhang, Christina Stengl, Larissa Derksen, Kristaps Palskis, Konstantinos Koritsidis, Klemens Zink, Sebastian Adeberg, Gerald Major, David Weishaar, Ulrike Theiß, Jing Jin, Maria Francesca Spadea, Elpida Theodoridou, Jürgen Hesser, Kilian-Simon Baumann, Joao Seco
E-Jahr:2024
Jahr:October 2024
Umfang:14 S.
Fussnoten:Online veröffentlicht: 02. August 2024 ; Gesehen am 11.11.2024
Titel Quelle:Enthalten in: Medical physics
Ort Quelle:Hoboken, NJ : Wiley, 1974
Jahr Quelle:2024
Band/Heft Quelle:51(2024), 10 vom: Okt., Seite 7439-7452
ISSN Quelle:2473-4209
 1522-8541
Abstract:Background Ultrahigh dose-rate radiation (UHDR) produces less hydrogen peroxide (H2O2) in pure water, as suggested by some experimental studies, and is used as an argument for the validity of the theory that FLASH spares the normal tissue due to less reactive oxygen species (ROS) production. In contrast, most Monte Carlo simulation studies suggest the opposite. Purpose We aim to unveil the effect of UHDR on H2O2 production in pure water and its underlying mechanism, to serve as a benchmark for Monte Carlo simulation. We hypothesized that the reaction of solvated electrons (eaq−{\mathrme_\mathrmaq^ - \) removing hydroxyl radicals (•OH), the precursor of H2O2, is the reason why UHDR leads to a lower G-value (molecules/100 eV) for H2O2 (G[H2O2]), because: 1, the third-order reaction between eaq−{\mathrme_\mathrmaq^ - \ and •OH is more sensitive to increased instantaneous ROS concentration by UHDR than a two-order reaction of •OH self-reaction producing H2O2; 2, eaq−{\mathrme_\mathrmaq^ - \ has two times higher diffusion coefficient and higher reaction rate constant than that of •OH, which means eaq−{\mathrme_\mathrmaq^ - \ would dominate the competition for •OH and benefit more from the inter-track effect of UHDR. Meanwhile, we also experimentally verify the theory of long-lived radicals causing lower G(H2O2) in conventional irradiation, which is mentioned in some simulation studies. Methods and materials H2O2 was measured by Amplex UltraRed assay. 430.1 MeV/u carbon ions (50 and 0.1 Gy/s), 9 MeV electrons (600 and 0.62 Gy/s), and 200 kV x-ray tube (10 and 0.1 Gy/s) were employed. For three kinds of water (real hypoxic: 1% O2; hypoxic: 1% O2 and 5% CO2; and normoxic: 21% O2), unbubbled and bubbled samples with N2O, the scavenger of eaq−{\mathrme_\mathrmaq^ - \, were irradiated by carbon ions and electrons with conventional and UHDR at different absolute dose levels. Normoxic water dissolved with sodium nitrate (NaNO3), another scavenger of eaq−{\mathrme_\mathrmaq^ - \, and bubbled with N2O was irradiated by x-ray to verify the results of low-LET electron beam. Results UHDR leads to a lower G(H2O2) than conventional irradiation. O2 and CO2 can both increase G(H2O2). N2O increases G(H2O2) of both UHDR and conventional irradiation and eliminates the difference between them for carbon ions. However, N2O decreases G(H2O2) in electron conventional irradiation but increases G(H2O2) in the case of UHDR, ending up with no dose-rate dependency of G(H2O2). Three-spilled carbon UHDR does not have a lower G(H2O2) than one-spilled UHDR. However, the electron beam shows a lower G(H2O2) for three-spilled UHDR than for one-spilled UHDR. Normoxic water with N2O or NaNO3 can both eliminate the dose rate dependency of H2O2 production for x-ray. Conclusions UHDR has a lower G(H2O2) than the conventional irradiation for both high LET carbon and low LET electron and x-ray beams. Both scavengers for eaq−{\mathrme_\mathrmaq^ - \, N2O and NaNO3, eliminate the dose-rate dependency of G(H2O2), which suggests eaq−{\mathrme_\mathrmaq^ - \ is the reason for decreased G(H2O2) for UHDR. Three-spilled UHDR versus one-spilled UHDR indicates that the assumption of residual radicals reducing G(H2O2) of conventional irradiation may only be valid for low LET electron beam.
DOI:doi:10.1002/mp.17335
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1002/mp.17335
 kostenfrei: Volltext: http://onlinelibrary.wiley.com/doi/abs/10.1002/mp.17335
 DOI: https://doi.org/10.1002/mp.17335
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:hydrogen peroxide
 solvated electron
 ultrahigh dose rate
 water radiolysis
K10plus-PPN:1908246596
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69272406   QR-Code
zum Seitenanfang