Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Titel:Combinatorial and Additive Number Theory VI
Titelzusatz:CANT, New York, USA, 2022 and 2023
Mitwirkende:Nathanson, Melvyn B. [HerausgeberIn]   i
Körperschaft:Workshops on Combinatorial and Additive Number Theory <20., 2022, Online> [VerfasserIn]   i
 Workshops on Combinatorial and Additive Number Theory <21., 2023, New York, NY; Online> [VerfasserIn]   i
Verf.angabe:edited by Melvyn B. Nathanson
Ausgabe:1st ed. 2025.
Verlagsort:Cham
Verlag:Springer Nature Switzerland
Jahr:2025
Umfang:1 Online-Ressource(VIII, 502 p. 30 illus., 12 illus. in color.)
Gesamttitel/Reihe:Springer Proceedings in Mathematics & Statistics ; 464
ISBN:978-3-031-65064-2
Abstract:Chessboard Domination: Introduction of Some New Problems -- Bounds on distinct and repeated dot product trees -- Fractal Dimension, Approximation, and Data Sets -- Towards the Gaussianity of Random Zeckendorf Games -- Linear Recurrences of Order at Most Two in Nontrivial Small Divisors and Large Divisors.-Representing Positive integers as a Sum of a Squarefree Number and a Prime -- Symmetric (not Complete Intersection) Numerical Semigroups and Syzygy Identities -- Commutative Monoid of Self-Dual Symmetric Polynomials -- Geometric Progressions in the Sets of Values of Reducible Cubic Forms -- Uniform Approximation by Polynomials with Integer Coefficients via the Bernstein Lattice -- On the Distribution of Subset Sums of Certain Sets in Zp2 and in N2 -- On a Polynomial Reciprocity Theorem of Carlitz -- Petersson-Knopp Type Identities for Generalized Dedekind-Rademacher Sums Attached to Three Dirichlet Characters.-Explicit Bounds for Large Gaps between Cubefree Integers -- The Family of α-Floor Quotient Partial Orders.-The Muirhead-Rado Inequality, 1: Vector Majorization and the Permutohedron -- The Muirhead-Rado Inequality, 2: Symmetric Means and Inequalities -- Patterns in the Iteration of an Arithmetic Function -- The Rate of Convergence for Selberg’s Central Limit Theorem under the Riemann Hypothesis -- Some proofs about Sequences in the Spirit of Paul Du Bois-Reymond -- Series with Summands involving Harmonic Numbers -- Condensation and Densification for Sets of Large Diameter.
 This proceedings volume, the sixth in a series from the Combinatorial and Additive Number Theory (CANT) conferences, is based on talks from the 20th and 21st annual workshops, held in New York in 2022 (virtual) and 2023 (hybrid) respectively. Organized every year since 2003 by the New York Number Theory Seminar at the CUNY Graduate Center, the workshops survey state-of-the-art open problems in combinatorial and additive number theory and related parts of mathematics. In this volume, the reader will find peer-reviewed and edited papers on current topics in number theory. This selection of articles will be of relevance to both researchers and graduate students interested in current progress in number theory.
DOI:doi:10.1007/978-3-031-65064-2
URL:Resolving-System: https://doi.org/10.1007/978-3-031-65064-2
 DOI: https://doi.org/10.1007/978-3-031-65064-2
Datenträger:Online-Ressource
Dokumenttyp:Konferenzschrift
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Druck-Ausgabe: Workshops on Combinatorial and Additive Number Theory (20. : 2022 : Online): Combinatorial and additive number theory VI. - Cham, Switzerland : Springer Nature, 2025. - viii, 502 Seiten
K10plus-PPN:1918486956
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69308363   QR-Code
zum Seitenanfang