Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Verfasst von:Corvin, Alex [VerfasserIn]   i
 Ibrahim, Taneem [VerfasserIn]   i
 Stratis, Kyle [VerfasserIn]   i
Titel:Scalable Kubernetes infrastructure for AI platforms
Verf.angabe:by Alex Corvin, Taneem Ibrahim, and Kyle Stratis
Ausgabe:First edition.
Verlagsort:Sebastopol, CA
Verlag:O'Reilly Media, Inc.
Jahr:2025
Umfang:1 online resource (50 pages)
Illustrationen:illustrations
Abstract:Generative AI is transforming industries, but for many enterprises, the journey from proof of concept to production remains a major hurdle. While businesses are investing heavily in building AI-powered applications like RAG-based chatbots, the vast majority of these projects fail to deliver tangible results. Success demands more than experimentation--it requires a deeper understanding of the challenges of managing AI in production and adopting MLOps practices to streamline the process. This report explores how enterprises can leverage MLOps, with a Kubernetes-first approach, to overcome adoption barriers, scale AI effectively, and maximize business impact. From building responsible models to running reliable production systems, our guide offers the strategies and tools you need to thrive in an AI-driven competitive landscape. Accelerate AI projects from experimentation to production readiness Standardize and streamline model creation for repeatability Deploy and manage AI models in production with confidence Build trust by creating responsible, explainable AI systems Leverage Kubernetes-native tools to apply MLOps principles at scale.
URL:Aggregator: https://learning.oreilly.com/library/view/-/9798341608191/?ar
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Traitement réparti
 Intelligence artificielle
 Logiciels d'application ; Développement
 Logiciels libres
 artificial intelligence
K10plus-PPN:1921170352
 
 
Lokale URL UB: Zum Volltext
 
 Bibliothek der Medizinischen Fakultät Mannheim der Universität Heidelberg
 Klinikum MA Bestellen/Vormerken für Benutzer des Klinikums Mannheim
Eigene Kennung erforderlich
Bibliothek/Idn:UW / m4696544524
Lokale URL Inst.: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69327182   QR-Code
zum Seitenanfang