Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---

+ Andere Auflagen/Ausgaben
heiBIB
 Online-Ressource
Verfasst von:Lisanza, Sidney [VerfasserIn]   i
 Gershon, Jacob Merle [VerfasserIn]   i
 Tipps, Samuel W. K. [VerfasserIn]   i
 Sims, Jeremiah Nelson [VerfasserIn]   i
 Arnoldt, Lucas [VerfasserIn]   i
 Hendel, Samuel J. [VerfasserIn]   i
 Simma, Miriam K. [VerfasserIn]   i
 Liu, Ge [VerfasserIn]   i
 Yase, Muna [VerfasserIn]   i
 Wu, Hongwei [VerfasserIn]   i
 Tharp, Claire D. [VerfasserIn]   i
 Li, Xinting [VerfasserIn]   i
 Kang, Alex [VerfasserIn]   i
 Brackenbrough, Evans [VerfasserIn]   i
 Bera, Asim K. [VerfasserIn]   i
 Gerben, Stacey [VerfasserIn]   i
 Wittmann, Bruce J. [VerfasserIn]   i
 McShan, Andrew C. [VerfasserIn]   i
 Baker, David [VerfasserIn]   i
Titel:Multistate and functional protein design using RoseTTAFold sequence space diffusion
Verf.angabe:Sidney Lyayuga Lisanza, Jacob Merle Gershon, Samuel W.K. Tipps, Jeremiah Nelson Sims, Lucas Arnoldt, Samuel J. Hendel, Miriam K. Simma, Ge Liu, Muna Yase, Hongwei Wu, Claire D. Tharp, Xinting Li, Alex Kang, Evans Brackenbrough, Asim K. Bera, Stacey Gerben, Bruce J. Wittmann, Andrew C. McShan & David Baker
E-Jahr:2024
Jahr:25 September 2024
Umfang:11 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 14.04.2025
Titel Quelle:Enthalten in: Nature biotechnology
Ort Quelle:New York, NY : Springer Nature, 1996
Jahr Quelle:2024
Band/Heft Quelle:(2024), Seite 1-11
ISSN Quelle:1546-1696
Abstract:Protein denoising diffusion probabilistic models are used for the de novo generation of protein backbones but are limited in their ability to guide generation of proteins with sequence-specific attributes and functional properties. To overcome this limitation, we developed ProteinGenerator (PG), a sequence space diffusion model based on RoseTTAFold that simultaneously generates protein sequences and structures. Beginning from a noised sequence representation, PG generates sequence and structure pairs by iterative denoising, guided by desired sequence and structural protein attributes. We designed thermostable proteins with varying amino acid compositions and internal sequence repeats and cage bioactive peptides, such as melittin. By averaging sequence logits between diffusion trajectories with distinct structural constraints, we designed multistate parent-child protein triples in which the same sequence folds to different supersecondary structures when intact in the parent versus split into two child domains. PG design trajectories can be guided by experimental sequence-activity data, providing a general approach for integrated computational and experimental optimization of protein function.
DOI:doi:10.1038/s41587-024-02395-w
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1038/s41587-024-02395-w
 kostenfrei: Volltext: https://www.nature.com/articles/s41587-024-02395-w
 DOI: https://doi.org/10.1038/s41587-024-02395-w
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Errata: Lisanza, Sidney: Publisher correction: Multistate and functional protein design using RoseTTAFold sequence space diffusion
Sach-SW:Computational models
 Molecular engineering
 Proteins
K10plus-PPN:1922856428
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69330971   QR-Code
zum Seitenanfang