| Online-Ressource |
Verfasst von: | Ferber, Dyke [VerfasserIn]  |
| Wölflein, Georg [VerfasserIn]  |
| Wiest, Isabella [VerfasserIn]  |
| Ligero, Marta [VerfasserIn]  |
| Sainath, Srividhya [VerfasserIn]  |
| Ghaffari Laleh, Narmin [VerfasserIn]  |
| El Nahhas, Omar S. M. [VerfasserIn]  |
| Müller-Franzes, Gustav [VerfasserIn]  |
| Jäger, Dirk [VerfasserIn]  |
| Truhn, Daniel [VerfasserIn]  |
| Kather, Jakob Nikolas [VerfasserIn]  |
Titel: | In-context learning enables multimodal large language models to classify cancer pathology images |
Verf.angabe: | Dyke Ferber, Georg Wölflein, Isabella C. Wiest, Marta Ligero, Srividhya Sainath, Narmin Ghaffari Laleh, Omar S. M. El Nahhas, Gustav Müller-Franzes, Dirk Jäger, Daniel Truhn & Jakob Nikolas Kather |
E-Jahr: | 2024 |
Jahr: | 21 November 2024 |
Umfang: | 12 S. |
Illustrationen: | Illustrationen |
Fussnoten: | Gesehen am 28.04.2025 |
Titel Quelle: | Enthalten in: Nature Communications |
Ort Quelle: | [London] : Springer Nature, 2010 |
Jahr Quelle: | 2024 |
Band/Heft Quelle: | 15(2024), Artikel-ID 10104, Seite 1-12 |
ISSN Quelle: | 2041-1723 |
Abstract: | Medical image classification requires labeled, task-specific datasets which are used to train deep learning networks de novo, or to fine-tune foundation models. However, this process is computationally and technically demanding. In language processing, in-context learning provides an alternative, where models learn from within prompts, bypassing the need for parameter updates. Yet, in-context learning remains underexplored in medical image analysis. Here, we systematically evaluate the model Generative Pretrained Transformer 4 with Vision capabilities (GPT-4V) on cancer image processing with in-context learning on three cancer histopathology tasks of high importance: Classification of tissue subtypes in colorectal cancer, colon polyp subtyping and breast tumor detection in lymph node sections. Our results show that in-context learning is sufficient to match or even outperform specialized neural networks trained for particular tasks, while only requiring a minimal number of samples. In summary, this study demonstrates that large vision language models trained on non-domain specific data can be applied out-of-the box to solve medical image-processing tasks in histopathology. This democratizes access of generalist AI models to medical experts without technical background especially for areas where annotated data is scarce. |
DOI: | doi:10.1038/s41467-024-51465-9 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
kostenfrei: Volltext: https://doi.org/10.1038/s41467-024-51465-9 |
| kostenfrei: Volltext: https://www.nature.com/articles/s41467-024-51465-9 |
| DOI: https://doi.org/10.1038/s41467-024-51465-9 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Cancer |
| Computer science |
| Diagnostic markers |
| Machine learning |
| Oncology |
K10plus-PPN: | 1923737155 |
Verknüpfungen: | → Zeitschrift |
In-context learning enables multimodal large language models to classify cancer pathology images / Ferber, Dyke [VerfasserIn]; 21 November 2024 (Online-Ressource)